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ASSESSING POPULATION BIOEQUIVALENCE IN A 2 x 2
CROSSOVER DESIGN WITH CARRYOVER EFFECT IN
A BAYESIAN PERSPECTIVE

Hyun Sook Ou!

ABSTRACT

A 2x2 crossover design including carryover effect is considered for assess-
ment of population bioequivalence of two drug formulations in a Bayesian
framework. In classical analysis, it is complex to deal with the carryover

- effect since the estimate of the drug effect is biased in the presence of a car-
ryover effect. The proposed method in this article uses uninformative priors
and vague proper priors for objectiveness of priors and the posterior proba-
bility distribution of the parameters of interest is derived with given priors.
The posterior probabilities of the hypotheses for assessing population bioe-
quivalence are evaluated based on a Markov chain Monte Carlo simulation
method. An example with real data set is given for illustration.

AMS 2000 subject classifications. Primary 62P10; Secondary 62F15.
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1. INTRODUCTION

When a brand-name drug is issued, generic copies of the brand-name drug
are developed. Under current Food and Drug Administration (FDA) regulation,
a patient may switch from the brand-name drug to its generic copy provided the
generic copy has been shown to be bioequivalent in average to the brand-name
drug. However, as indicated in Chen (1997) and the FDA draft guidance (1997),
the average bioequivalence focuses only on the comparison in population averages
between the test and reference formulations and so average bioequivalence fails
to take into account the intra- or inter-subject variation between the test and
reference formulation.
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As a results, the draft FDA guidence (1997) and Patnaik et al. (1997) as-
serted that average bioequivalence can be used neither for evaluation of pre-
scribability for new patients or for switchability for patients already receiving
long-term administration of medications. That is, average bioequivalence can
guarantee neither prescribability nor switchability. Population and individual
bioequivalence take these two concepts into consideration, respectively. Popula-
tion bioequivalence compares overall distributions of bioavailability, therefore, it
is prescribability for the new patient, while individual bioequivalence compares
bioavailabilities within individuals (Anderson and Hauck, 1990; Schall, 1995),
therefore, it is switchability within the same subject.

Individual bioequivalence is more ideal because it compares individually. How-
ever, in general, more complicated models such as 2 x 3 or 2 x 4 crossover design
which may cause ethical or practical problem are needed for assessing individual
bioequivalence. On the otherhand, population bioequivalence can be assessed
based on the 2 x 2 crossover design which is the most commonly used for com-
paring two drug formulations.

Under the normality assumption, population bioequivalence can be estab-
lished by demonstrating equivalence in both average and variability since a nor-
mal distribution is uniquely determined by its mean and variance.

For assessment of bioequivalence in variance only, two testing procedures have
been proposed by Liu and Chow (1992) and Wang (1997). Also, Chen et al.
(1996) derived an exact confidence region approach for the assessment of bioe-
quivalence in variance only when the intersubject variance is known, and consid-
ered a large sample approximation when the intersubject variance is unknown.
Hauck et al. (1997) proposed a method for assessing population bioequivalence
in a reduced 2 x 2 crossover design in a classical approach. Oh et al. (2003) pro-
posed a Bayesian anaysis for assessing population bioequivalence in a full 2 x 2
crossover design. However all these are based on the assumption of no carryover
effect.

In this article, the 2x2 crossover design including carryover effect is considered
for assessing population bioequivalence in a Bayesian approach. The procedure
provided by Oh et al. (2003) is modified in this research.

In Section 2, we present a 2 x 2 crossover design including carryover effect
with some assumptions. In Section 3, the posterior distribution of the parameters
is derived with choice of priors. To get around the complexity of the posterior
distribution, a Markov chain Monte Carlo algorithm is proposed for estimating
the posterior probabilities of the hypotheses in Section 4. We apply the proposed
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algorithm in an example data set in Section 5. Summary and discussion are given
in Section 6.

2. THE MODEL

For comparison of two drug formulations, a reference drug (R) and a test
drug (T'), consider the following model accounting for carryover effect on a 2 x 2
crossover design,

Yije = B+ Sik + P + Fj gy + Clim1,x) + €3jis

2.1
i=1,...,mk, j=1,2 k=1,2, (21)

where .
(a) yijk is the response of the i subject in the k™ sequence for the j%* period,
(b) w is the overall mean,
(c
d
(e

P; is the effect of the ;" period with P, + P, = 0,
Fijr) is the direct effect of the formulation in the k** sequence which is
administered at the j%* period such that

)
) S;x is the random subject effect of the ith subject in the kth sequence,
)
)

with Fr + Fr =0,

(f) C(j—1,k) is the carryover effect of the formulation in the k** sequence which
is administered at the (j — 1)** period where Cor = 0 for k = 1,2,
Cu,1) = Cr and C(y 9y = Cr with Cg + Cr = 0,

(g) eijk is the intra subject random error in observing ;.

It is assumed that Sj; are independent and identically distributed as N(0,0?)
and e;;; are independently distributed as

.. N(0,0%),ifj =k
Y N(0,02), if § # k.

Also, {S;x} and {e;jr} are assumed to be mutually independent.

Population bioequivalence of two drug bioavailabilities can be established by
demonstrating equivalence in both average and variability since y;;i’s are nor-
mally distributed in the above model. Thus, population bioequivalence can be
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assessed by testing the following interval hypotheses;

2
Ho:[|Pr—Fg|<é or |Fr—Fr|>8)] or [ <¢ or > €]
R
VETSUS (2.2)
2
Hy:6,<|Pr—Fr|<d& or <% <e,
R

where the constants &1, d2, €1 and ez are chosen to define clinically significant
differences. With these hypotheses, population bioequivalence between two for-
mulations is confirmed if Hy is rejected.

In general, the rejection criterion of Bayes test rejects Hy if the posterior prob-
ability of H; is greater than the posterior probability of Hy. However, a stronger
rejetion creterion is needed in bioequivalence test. Because it is common to use
the 90% confidence interval for assessment of bioequivalence in classical analysis
and thus the 90% highest probability density (HPD) interval (Berger, 1985) is
used instead in Bayesian analysis. This implies that the posterior probability of
H, should be greater than 7 for assessing bioequivalence of two drug formulations,
where 1 > 0.5 chosen appropriately.

3. POSTERIOR DISTRIBUTION

The unknown parameters in the model (2 1) are ,u, P (=P), F (= Fg) and
C (= CR) for location parameters and O’S, o2 % and aT for scale parameters. The
joint posterior distribution of the unknown parameters can be devided into two
parts, the conditional posterior distribution of location parameters given scale
parameters and the posterior distribution of scale parameters;

P(/“’) P) F7 C? 0-%" 0’%’0-122 ‘ y) - P(/’t’ P’ F7 C’y? 0‘%70-1227 0‘%)P(0’§',0’%{,0’% , y)'

Let us first consider the conditional posterior distribution of location parame-
ters given scale parameters. For the prior distribution, uniform prior distribution
of m{u, P, F,C) = 1 is assumed, which is a well-known uninformative prior dis-
tribution. The likelihood function of (u, P, F,C) can be represented easily by
following independent sufficient statistics of each parameter.

i = Y@11+ Faz + Go21 + F22) ~ N(p, mok/16),

P = %(17.11 + 712 — 21 — G22) ~ N(P,mc2/16), 3.1)
1? = i(l_/.n —G12 — Jo1 + J22) ~ N(F — C/2,ma?/16), :
C= %('5,11 — §12 +To1 — G22) ~ N(C,mo%/4),
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where 02 = 0% + 0%, 04 = 402 + 02 and m = 1/n; + 1/ny. Since the posterior

density function is proportional to the product of the likelihood function and the
prior density function,

P(u, P,F,C | y,0%,0%,0%)
« f(i, P,F,C | u,P,F,C,0% 0%, 0%) 1
o N (g, mo? /16)N(P|P,mo2/16)N(F|F — C/2,ma2/16)N(C|C,ma%/4),

where N(X|6,72) denotes the density function of X from normal distribution
with mean @ and variance 72. Integrating out p and P gives

P(F7 C | y7 0-;297 o‘?{’ a’%)

1 16 - 1 4 N
— - F-F 2L — — —-C)?). (3.2
x p exp{ 2m0§( +C/2) } - exp{ 2mo? (Cc-0) } (3.2)
Therefore
2 2 2 B A m ., 2 2 2
F|(y,0% 0%,0%) ~ N(F +C/2, Z(20%+ 0k +})). (3.3)

If it is assumed that the carryover effect does not exist (i.e., C' = 0),
2 2 2 UL 2
F|(yaGS7URaU )NN(F, 1_6(0'R+0'T)).

Hence the direct effect of the formulation does not depend on inter-subject vari-
ability when there is no carryover effect but it depends on inter-subject variability
when there exists carryover effect. The conditional posterior distribution of the
carryover effect given scale parameters is

. m
C | (4,08, 0k, 08) ~ N(C, T (403 + ok +03)). (3.4)

It can be seen that the carryover effect has more variability than the drug effect
and its variability depends on the inter-subject variability more than the intra-
subject variability.

Now, let us consider the posterior distribution of scale parameters. Orthog-
onal transformation by Liu (1991) is applied here to derive the posterior dis-
tribution of scale parameters. The orthogonal transformation is as follows; Let
Yie = Yk, .- .,Ynkjk)t and let cgr be ny x 1 vector of coefficients of normal-
ized linear orthogonal contrasts of degree ng such that 1‘tcg;c = 0, c;k “cgk = 1,
czk ccgp =0forg#g,whereg=1,...,n,—1,j=1,2, k=1,2. Let Zgjy =
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cheYik = Clgk¥1jk + -+ + CnygkYnygk- Then E(Zgjr) = 0, Var(Zgsx) = o3 + U%‘(j,k)
and Cov(Zyjk, Zgjrk) = 02(chy - k) = 03 for all g, j and k. Hence,

Z= (Zu1,-- s Ziny-1)11, 2122, - - - s Z(ny—1)22

Z191, -3 Dy —1)21, 21125 - - - Z(pg—112)"

is distributed as the multivariate normal distribution with mean 0 and covariance
matrix ¥, where

2
Y (03 + UR)In1+n2—2 ag[m-i-nz—?
- 2 2 .
UsIn1+n2—2 (0’3 + UT)In1+n2—2

Since the orthogonal transformation is linear, the units of the original data are
maintained in the transformed data. Thus the likelihood function of (ag, a%, o2)
is derived as follows;

u(y) -1/2 w(!/:U%,U%)
f(z | 6%, 0%, o2 ocexp{———-——}p expl ——————=+- 0, (3.5
( l S YR T) 2(0_%%4_0_%) 2p(0’%+0’%) ( )

where p = 0202 + 02, p > %02, u(y) = Y. (zi1 — zi21)2 + > (ziz2 — #zi12)? and
2 2
w(y, 0%,0%) = Y(072i11 + 0%2i21)* + 3 (0%zi22 + 0%zi12)%.
For prior distribution of scale parameters, vague proper priors are considered

to avoid impropriety of the posterior distribution. Since 7 (p, a%,az) = 7(p |

0%, 0%)m(0% | 02)m(02), priors are assumed as

p‘ (U%,Uz) ~ IG(alyﬁl)I(p>a%d%)’
0% | 2 ~ Uniform(0, 02),

Ug ~ IG(CY2,,82),

where IG(«, 3) denotes the inverse gamma distribution with two hyperparamers
o and 3. Note that o and 8 near 0 yields a vague prior.

Hence the posterior density function of scale parameters (p, a%, 0?) is obtained
by the likelihood function of (p, 0%, 02) from (3.5) with the priors given above as
follows;

P(d%,02,ply)

2 2 a1
x h{p, UR,ae,y)I(p>U%o%) (;) e 92'P2 ;I(agqg)’ (3.6)
€ €
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where h(p,0%,02,y) = p~(@1+3/2) exp(—p~H{w(y, 0%,02)/(202) + 1/B1}). From
(3. 3) and (3.6), the joint posterior density function of the parameters of interest,
(F,0%,02), for testing of population bioequivalence is given as

P(F, O-%Z’ a',% | y)OC :%020% m ex W(F F 0/2)} (pa U?{a Uga y)dp
x(;lz)azﬂ exp [ - ;5(1/52 +u(y)/2)] ?1:;’](03”129'

However, it is very hard to compute the posterior probabilities of the hypothe-
ses given in (2.2) from the above posterior density function because it is highly
complicated. In the following section, a Markov chain Monte Carlo (MCMC)
algorithm for estimating the poterior probabilities of the hypotheses is proposed.

4. MCMC ALGORITHM

From (3.6), the conditional posterior distribution of p given (O'QR, 0?) follows
the inverse gamma distribution, I1G(cq + 1/2,w(y,0%,02)/(202) + 1/B1), p
o RaT and the posterior density function of (o2 B0, 0?) is given as

1 yeatl 1 Y
B R Y e e
e c

2
OROT

o

However, since the conditional posterior density function of F' depends on (p, 0‘%,
02), let us consider generating random samples of (F, p,0%,02).

We suggest generating samples of (O’R, 02) by using a Metropolis-Hastings
(M-H) algorithm of Hastings (1970) and then generate p from its conditional
posterior distribution given (0%,02), and then generate F' from the conditional
posterior distribution of F given (p, a%,ag). For the proposal density in the
M-H algorithm, we propose to use g1(c2)g2(0%|02), where g1(0?) is the density
function of IG(az, {u(y)/2+ 1/8}71) and g2(c%|o?) is the density function of
Uniform(0, 02). Details of the algorithm are as follows.

(0) 3(0))

(i) Choose a starting point (F©), p% o3 and set i = 0.

(ii) Draw o2 from IG(az,{u(y)/2 + 1/B6}~1), 0% from Uniform(0, ¢2), and v
from Uniform(0,1). Let

fo<'>2002 h(pa 0-]2{7 3) y)dp

A=minq1, 2G-1) 26-1)

f2(z 1,261 h(p,oq ,y)dp
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Let

(0", 02") = (0}, 03), iy <X,

(a%i),az(i)) = (az(i_l),az(i_l)), otherwise.

(iii) Draw u from Uniform(0,1). Compute G(1/(0%0%)) and then let p = 1 —
(1 —u)G(1/(c%0%)) and let p = 1/q;_p, where G denotes the cumulative
distribution function and g;_, denotes the 100(1—p) percentile of the inverse
gamma distribution of p, IG(a1 + 1/2,w(y, 0%,02%)/(202) + 1/51).

(iv) Draw F from N(F + C/2, m(20%+ 0%+ 02.)/8), here 0% can be expressed
by p, a%z and o2.

(v) Repeat steps (ii) to (iv).

Note that the step (iii) in the above algorithm, is a procedure for drawing

random samples of p with the restriction of p > a%{a%. From these random

samples of (F), p, 012[3, 0?), samples from a burn-in phase of the Marcov chain are
discarded and samples from every I*® iteration after burn-in, where [ is the lag
size where the autocorrelation between samples vanishes, can be taken and used
for posterior inference. From these samples, the posterior probability of the
hypotheses for assessing population biocequivalence in (2.2) can be evaluated.
Above all, from these random samples of (F, p, or%, 02), average bioequivalence
and variance bioequivalence are able to be testified by using the marginal random
samples of F' and the marginal random samples of (0’%, 0?), respectively. For the
carryover effect, random samples of C from the posterior distribution given in
(3.4) can be easily obtained by a slight modification of the MCMC algorithm

above.

5. AN EXAMPLE

Let us consider an example of a 2 x 2 crossover design experiment concerning
bioavailability between two formulations introduced by Liu and Chow (1992).
It was shown that two drug formulations in the example were bioequivalent in
average but not in variability under the assumption of no-carryover effect (Chow
and Liu, 1992; Liu and Chow, 1992; Chen et al., 1996). Oh et al. (2003) analysed
the data by a Bayesian procedure and showed that the same conclusion was
derived with the classical analysis.

However, from the data, the maximum likelihood estimate of the carryover
effect is €' = 4.7958, which is bigger than the maximum likelihood estimate of the



ASSESSING POPULATION BIOEQUIVALENCE 247

drug effect, F = 1.1437. Obviously, the carryover effect seems not to be ignorable
in this case.

To perform the MCMC algorithm proposed in the previous section, we need to
choose the hyperparameters of inverse gamma prior distributions. For the prior
distribution of p, IG(a1, B1), we choose a; = 5 and f5; = 0.0000003 for vagueness
of the prior distribution and for adjusting the prior mean to be larger than &%&%
to satisfy the restriction of p > 012,20%, where &% and c}% are sample variances of
each drug formulation. For the prior distribution of 02, IG (a2, 32), we choose
as = 3 and B2 = 0.001 for vagueness of the prior distribution and for adjusting
the prior mean to be equal to the sample variance 62, where 62 = &% + &%.

From MCMC iterations, 110, 000 random samples are generated and then first
10, 000 samples are discarded. Finally 10,000 random samples are taken from ev-
ery 10" iteration from 100,000 samples. From these samples, the proportion of
satisfying Hp is 7.91%, which indicates obviously rejecting the null hypothesis
and so assessing the population bioequivalence of two drug formulations is failed.
Separate tests for bioequivalence in mean and variance yield 61.07% and 12.49%
as the estimated posterior probabilities of Hy, respectively. Here 61.07% is bigger
than 50%, that is, the estimated posterior probability of H; is greater than the
estimated posterior probability of Hy, however, the 90% highest probability den-
sity (HPD) interval of F is estimated as (—11.87,18.66) which is not within the
bioequivalence interval (—8.2559, 8.2559). To satisfy the HPD interval criterion,
the posterior probability of H; should be greater than 0.9. In that sense, two
drugs in the example are not bioequivalent in mean as well as in variance by
separate tests.

For sensitivity of the results on the choice of hyperparameters of the inverse
gamma, distributions, the results are hardly affected by reasonably vague specifi-
cations of the inverse gamma priors, for example, for ,8'1 = 1077 and ﬂ; = 0.0001,
which are smaller than 31 and (s, it shows that the estimated posterior proba-
bility of H; is 54.89% in average bioequivalence test, 12.1% in variance bioequiv-
alence test and 7.09% in population bioequivalence test.

Next, let us consider the case when the carryover effect is ignored in the same
data which was considered in Chow and Liu (1992), Liu and Chow (1992), Chen
et al. (1996) and Oh et al. (2003). Similar MCMC iterations are performed
without carryover effect, showing that the estimated posterior probability of Hy
is 98.31% in average bioequivalence test, 11.73% in variance bioequivalence test
and 11.56% in population bioequivalence test. Hence two drugs are bioequivalent
in average only under the assumption of no-carryover effect, which coincides with
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the results of those of the above articles.

Figure 5.1 shows the posterior probability density functions of F with and
without carryover effect. Two vertical lines in the figure represent the bioequiva-
lence limits, +-8.2559. It can be seen that the variance of the drug effect F with
the carryover effect is much larger than with no carryover effect.

0.15
1

— with carryover effect
~ | == without carryover effec

0.10
-

Density
0.05
\

0.00

FIGURE 5.1 The posterior density function of F'.

6. SUMMARY AND DISCUSSION

We have proposed a Bayesian method for assessing population bioequivalence
in a 2 x 2 crossover design experiment including carryover effect. For objec-
tiveness of priors, we have suggested using uniform priors for location parameters
and vague proper priors for scale parameters. The likelihood functions of location
parameters have derived by using independent sufficient statistics and the likeli-
hood functions of scale parameters have derived by an orthogonal transformation
of data. With given priors and the likelihood functions the posterior distribution
of the parameters of interest has obtained. To get around the complexity of the
posterior distribution, a Markov chain Monte Carlo algorithm has been proposed
for estimating the posterior probabilities of the hypotheses.

In classical analysis, it is complex to deal with the carryover effect since the
estimate of the drug effect is biased in the presence of a carryover effect. Thus
it is assumed that there is no carryover effect by a long time of washout period
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or data from the first period alone are used for anaysis if the carryover effect is
believed to be exist by testing the null hypothesis of no carryover effect. However,
it has been argued that the carryover effect is non-ignorable even for a sufficiently
long washout period or by testing the point-null hypothesis of no carryover effect
(Hills and Armitage, 1979; Grieve, 1985). Also, if we use data from the first
period alone, we will lose much information that the crossover design experiment
gives.

The proposed Bayesian method provides a tool for assessing population bioe-
quivalence based on the full model including the carryover effect. It provides
simpler way to estimate the drug effect with estimation error and it is not nec-
essary to give up a part of the data from the experiment in the presence of
a carryover effect. In addition, average bioequivalence, variance bioequivalence
and population bioequivalence are able to be testified all at once by the proposed
method.

Note that the carryover effect is completely confounded with the sequence
effect in (3.1). This means that the randomization of allocation of subjects affects
the carryover effect. Thus it should be careful for randomization in crossover
design experiment.
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