• 제목/요약/키워드: Methods of Technology Transfer

검색결과 610건 처리시간 0.026초

Single-Molecule Methods for Investigating the Double-Stranded DNA Bendability

  • Yeou, Sanghun;Lee, Nam Ki
    • Molecules and Cells
    • /
    • 제45권1호
    • /
    • pp.33-40
    • /
    • 2022
  • The various DNA-protein interactions associated with the expression of genetic information involve double-stranded DNA (dsDNA) bending. Due to the importance of the formation of the dsDNA bending structure, dsDNA bending properties have long been investigated in the biophysics field. Conventionally, DNA bendability is characterized by innate averaging data from bulk experiments. The advent of single-molecule methods, such as atomic force microscopy, optical and magnetic tweezers, tethered particle motion, and single-molecule fluorescence resonance energy transfer measurement, has provided valuable tools to investigate not only the static structures but also the dynamic properties of bent dsDNA. Here, we reviewed the single-molecule methods that have been used for investigating dsDNA bendability and new findings related to dsDNA bending. Single-molecule approaches are promising tools for revealing the unknown properties of dsDNA related to its bending, particularly in cells.

Graphene growth from polymers

  • Seo, Hong-Kyu;Lee, Tae-Woo
    • Carbon letters
    • /
    • 제14권3호
    • /
    • pp.145-151
    • /
    • 2013
  • Graphene is a fascinating material with excellent electrical, optical, mechanical, and chemical properties. Remarkable progress has been made in the development of methods for synthesizing large-area, high-quality graphene. Recently, the chemical vapor deposition method has opened up the possibility of using graphene for electronic devices and other applications. This review covers simple and inexpensive methods to grow graphene using polymers as solid carbon sources; which do not require an additional process to transfer graphene from the growth substrate to the receiver substrate.

Estimation of Energetic and Charge Transfer Properties of Iridium(III) Bis(2-phenylpyridinato-N,C2')acetylacetonate by Electrochemical Methods

  • Cha, Joeun;Ko, Eun-Song;Shin, Ik-Soo
    • Journal of Electrochemical Science and Technology
    • /
    • 제8권2호
    • /
    • pp.96-100
    • /
    • 2017
  • Iridium(III) bis(2-phenylpyridinato-$N,C^{2^{\prime}}$)acetylacetonate ($(ppy)_2Ir(acac)$), a green dopant used in organic light-emitting devices (OLEDs), was subjected to electrochemical characterization to estimate its formal oxidation potential ($E^{o^{\prime}}$), HOMO energy level ($E_{HOMO}$), electron transfer rate constant ($k^{o^{\prime}}$), and diffusion coefficient ($D_o$). The employed combination of voltammetric methods, i.e., cyclic voltammetry (CV), chronocoulometry (CC), and the Nicholson method, provided meaningful insights into the electron transfer kinetics of $(ppy)_2Ir(acac)$, allowing the determination of $k^{o^{\prime}}$ and $D_o$. The quasi-reversible oxidation of $(ppy)_2Ir(acac)$ furnished information on $E^{o^{\prime}}$ and $E_{HOMO}$, allowing the latter parameter to be easily estimated by electrochemical methods without relying on expensive and complex ultraviolet photoemission spectroscopic (UPS) measurements.

A Novel Video Stitching Method for Multi-Camera Surveillance Systems

  • Yin, Xiaoqing;Li, Weili;Wang, Bin;Liu, Yu;Zhang, Maojun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권10호
    • /
    • pp.3538-3556
    • /
    • 2014
  • This paper proposes a novel video stitching method that improves real-time performance and visual quality of a multi-camera video surveillance system. A two-stage seam searching algorithm based on enhanced dynamic programming is proposed. It can obtain satisfactory result and achieve better real-time performance than traditional seam-searching methods. The experiments show that the computing time is reduced by 66.4% using the proposed algorithm compared with enhanced dynamic programming, while the seam-searching accuracy is maintained. A real-time local update scheme reduces the deformation effect caused by moving objects passing through the seam, and a seam-based local color transfer model is constructed and applied to achieve smooth transition in the overlapped area, and overcome the traditional pixel blending methods. The effectiveness of the proposed method is proved in the experiements.

시뮬레이션 기법을 이용한 LDPC 부호와 터보부호에 대한 EXIT 차트 생성 비교 (Comparison of EXIT chart generation for LDPC and turbo codes)

  • 람손 문냐라지 니와무콘디와;김수영
    • 한국위성정보통신학회논문지
    • /
    • 제10권3호
    • /
    • pp.73-77
    • /
    • 2015
  • 본 논문에서는 반복 복호 과정에서 연판정 정보값들의 변화로 인하여 성능이 개선되는 상황을 분석하기 위하여 사용되는 EXIT(extrinsic information transfer) 차트를 LDPC 부호와 터보 부호에 대하여 생성하는 기법을 소개하고, EXIT 차트 생성과정에서 비트 오류를 제외하였을 경우 나타나는 효과에 대해 살펴보기로 한다. 본 논문에서 제시된 시뮬레이션을 이용한 EXIT 챠트 생성 기법은 매우 간단한 방법으로 반복 복호를 사용하는 오류정정부호의 정보흐름을 파악할 수 있는 효율적인 방법이다. 시뮬레이션 결과 분석을 통하여 비트 오류를 제외할 경우 지나치게 정보량이 높은 구간에서만 EXIT 챠트가 생성된다는 사실을 확인할 수 있었다.

An adaptive deviation-resistant neutron spectrum unfolding method based on transfer learning

  • Cao, Chenglong;Gan, Quan;Song, Jing;Yang, Qi;Hu, Liqin;Wang, Fang;Zhou, Tao
    • Nuclear Engineering and Technology
    • /
    • 제52권11호
    • /
    • pp.2452-2459
    • /
    • 2020
  • Neutron spectrum is essential to the safe operation of reactors. Traditional online neutron spectrum measurement methods still have room to improve accuracy for the application cases of wide energy range. From the application of artificial neural network (ANN) algorithm in spectrum unfolding, its accuracy is difficult to be improved for lacking of enough effective training data. In this paper, an adaptive deviation-resistant neutron spectrum unfolding method based on transfer learning was developed. The model of ANN was trained with thousands of neutron spectra generated with Monte Carlo transport calculation to construct a coarse-grained unfolded spectrum. In order to improve the accuracy of the unfolded spectrum, results of the previous ANN model combined with some specific eigenvalues of the current system were put into the dataset for training the deeper ANN model, and fine-grained unfolded spectrum could be achieved through the deeper ANN model. The method could realize accurate spectrum unfolding while maintaining universality, combined with detectors covering wide energy range, it could improve the accuracy of spectrum measurement methods for wide energy range. This method was verified with a fast neutron reactor BN-600. The mean square error (MSE), average relative deviation (ARD) and spectrum quality (Qs) were selected to evaluate the final results and they all demonstrated that the developed method was much more precise than traditional spectrum unfolding methods.

열전달 및 물질전달을 이용한 공극 발열도로에서의 융설 해석에 대한 이론적 연구 (Theoretical Study on Snow Melting Process on Porous Pavement System by using Heat and Mass Transfer)

  • 윤태영
    • 한국도로학회논문집
    • /
    • 제17권5호
    • /
    • pp.1-10
    • /
    • 2015
  • PURPOSES : A finite difference model considering snow melting process on porous asphalt pavement was derived on the basis of heat transfer and mass transfer theories. The derived model can be applied to predict the region where black-ice develops, as well as to predict temperature profile of pavement systems where a de-icing system is installed. In addition, the model can be used to determined the minimum energy required to melt the ice formed on the pavement. METHODS : The snow on the porous asphalt pavement, whose porosity must be considered in thermal analysis, is divided into several layers such as dry snow layer, saturated snow layer, water+pavement surface, pavement surface, and sublayer. The mass balance and heat balance equations are derived to describe conductive, convective, radiative, and latent transfer of heat and mass in each layer. The finite differential method is used to implement the derived equations, boundary conditions, and the testing method to determine the thermal properties are suggested for each layer. RESULTS: The finite differential equations that describe the icing and deicing on pavements are derived, and we have presented them in our work. The framework to develop a temperature-forecasting model is successfully created. CONCLUSIONS : We conclude by successfully creating framework for the finite difference model based on the heat and mass transfer theories. To complete implementation, laboratory tests required to be performed.

축대칭 하중을 받는 원통형 셸의 동적응답 해석 (Dynamic Response Analysis of Cylindrical Shell with Axisymmetric Loading)

  • 최명수;여동준
    • 동력기계공학회지
    • /
    • 제17권6호
    • /
    • pp.33-39
    • /
    • 2013
  • It is very important to analyze the dynamic responses of the shell structures from the viewpoint of the design of shell structures with a variety of axisymmetric loadings. In this paper, the computational algorithm for the dynamic response analysis of an cylindrical shell with axisymmetric loading is formulated by the transfer mass coefficient method based on the transfer of mass coefficient. After the computational programs for obtaining the dynamic responses of cylindrical shells with axisymmetric loading are made by the transfer mass coefficient method and the finite element method, the computational results by both methods are compared. From the computational results, we can confirm that the transfer mass coefficient method has the effectiveness in the dynamic response analyses of cylindrical shells with a variety of axisymmetric loadings.

METALLIC INTERFACES IN HARSH CHEMO-MECHANICAL ENVIRONMENTS

  • Yildiz, Bilge;Nikiforova, Anna;Yip, Sidney
    • Nuclear Engineering and Technology
    • /
    • 제41권1호
    • /
    • pp.21-38
    • /
    • 2009
  • The use of multi scale modeling concepts and simulation techniques to study the destabilization of an ultrathin layer of oxide interface between a metal substrate and the surrounding environment is considered. Of particular interest are chemo-mechanical behavior of this interface in the context of a molecular-level description of stress corrosion cracking. Motivated by our previous molecular dynamics simulations of unit processes in materials strength and toughness, we examine the challenges of dealing with chemical reactivity on an equal footing with mechanical deformation, (a) understanding electron transfer processes using first-principles methods, (b) modeling cation transport and associated charged defect migration kinetics, and (c) simulation of pit nucleation and intergranular deformation to initiate the breakdown of the oxide interlayer. These problems illustrate a level of multi-scale complexity that would be practically impossible to attack by other means; they also point to a perspective framework that could guide future research in the broad computational science community.

비상전원 기능을 갖는 하이브리드 ESS를 위한 PCS 제어전략 (A PCS Control Strategy for Hybrid ESS with Function of Emergency Power Supply)

  • 김상진;권민호;최세완;백석민;김미성
    • 전력전자학회논문지
    • /
    • 제21권4호
    • /
    • pp.302-311
    • /
    • 2016
  • This paper proposes a hybrid ESS that integrates an energy storage system (ESS) with an uninterruptible power supply (UPS). The hybrid ESS has a demand management and emergency power supply function while increasing the battery utilization of the UPS, which has just been used in a power failure. In addition to the critical load, the proposed system augments the capacity of emergency generation using an additional load, which has voltage and frequency-dependent characteristics to the grid side. The control algorithm of the AC-DC converter and bidirectional DC-DC converter is proposed for demand management and emergency power supply. Furthermore, seamless and autonomous transfer methods to alleviate the transient during mode transfer are proposed. To validate the proposed control scheme, experimental results from a 5 kW prototype are provided.