DOI QR코드

DOI QR Code

Graphene growth from polymers

  • Seo, Hong-Kyu (Department of Materials Science and Engineering, Pohang University of Science and Technology) ;
  • Lee, Tae-Woo (Department of Materials Science and Engineering, Pohang University of Science and Technology)
  • Received : 2013.05.02
  • Accepted : 2013.06.30
  • Published : 2013.07.31

Abstract

Graphene is a fascinating material with excellent electrical, optical, mechanical, and chemical properties. Remarkable progress has been made in the development of methods for synthesizing large-area, high-quality graphene. Recently, the chemical vapor deposition method has opened up the possibility of using graphene for electronic devices and other applications. This review covers simple and inexpensive methods to grow graphene using polymers as solid carbon sources; which do not require an additional process to transfer graphene from the growth substrate to the receiver substrate.

Keywords

References

  1. Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK. Two-dimensional atomic crystals. Proc Natl Acad Sci U S A, 102, 10451 (2005). http://dx.doi.org/10.1073/pnas.0502848102.
  2. Hwang EH, Adam S, Das Sarma D. Carrier transport in twodimensional graphene layers. Phys Rev Lett, 98, 186806 (2007). http://dx.doi.org/10.1103/PhysRevLett.98.186806.
  3. Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL. Ultrahigh electron mobility in suspended graphene. Solid State Commun, 146, 351 (2008). http://dx.doi.org/10.1016/j.ssc.2008.02.024.
  4. Lee C, Wei XD, Kysar JW, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321, 385 (2008). http://dx.doi.org/10.1126/science.1157996.
  5. Geim AK. Graphene: status and prospects. Science, 324, 1530 (2009). http://dx.doi.org/10.1126/science.1158877.
  6. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science, 306, 666 (2004). http://dx.doi.org/10.1126/science.1102896.
  7. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS. Graphene-based composite materials. Nature, 442, 282 (2006). http://dx.doi.org/10.1038/nature04969.
  8. Blake P, Brimicombe PD, Nair RR, Booth TJ, Jiang D, Schedin F, Ponomarenko LA, Morozov SV, Gleeson HF, Hill EW, Geim AK, Novoselov KS. Graphene-based liquid crystal device. Nano Lett, 8, 1704 (2008). http://dx.doi.org/10.1021/nl080649i.
  9. Li X, Zhang G, Bai X, Sun X, Wang X, Wang E, Dai H. Highly conducting graphene sheets and Langmuir-Blodgett films. Nat Nanotechnol, 3, 538 (2008). http://dx.doi.org/10.1038/nnano.2008.210.
  10. Tung VC, Allen MJ, Yang Y, Kaner RB. High-throughput solution processing of large-scale graphene. Nat Nanotechnol, 4, 25 (2009). http://dx.doi.org/10.1038/nnano.2008.329.
  11. Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov AN, Conrad EH, First PN, de Heer WA. Electronic confinement and coherence in patterned epitaxial graphene. Science, 312, 1191 (2006). http://dx.doi.org/10.1126/science.1125925.
  12. Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn JH, Kim P, Choi JY, Hong BH. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 457, 706 (2009). http://dx.doi.org/10.1038/nature07719.
  13. Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, Kong J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett, 9, 30 (2009). http://dx.doi.org/10.1021/nl801827v.
  14. Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RS. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 324, 1312 (2009). http://dx.doi.org/10.1126/science.1171245.
  15. Li X, Cai W, Colombo L, Ruoff RS. Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett, 9, 4268 (2009). http://dx.doi.org/10.1021/nl902515k.
  16. Bae S, Kim H, Lee Y, Xu X, Park JS, Zheng Y, Balakrishnan J, Lei T, Ri Kim H, Song YI, Kim YJ, Kim KS, Ozyilmaz B, Ahn JH, Hong BH, Iijima S. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol, 5, 574 (2010). http://dx.doi.org/10.1038/NNANO.2010.132.
  17. Bhaviripudi S, Jia X, Dresselhaus MS, Kong J. Role of kinetic factors in chemical vapor deposition synthesis of uniform large area graphene using copper catalyst. Nano Lett, 10, 4128 (2010). http://dx.doi.org/10.1021/nl102355e.
  18. Gao L, Ren W, Zhao J, Ma LP, Chen Z, Cheng HM. Efficient growth of high-quality graphene films on Cu foils by ambient pressure chemical vapor deposition. Appl Phys Lett, 97, 183109 (2010). http://dx.doi.org/10.1063/1.3512865.
  19. Chae SJ, Gunes F, Kim KK, Kim ES, Han GH, Kim SM, Shin HJ, Yoon SM, Choi JY, Park MH, Yang CW, Pribat D, Lee YH. Synthesis of large-area graphene layers on poly-nickel substrate by CVD: wrinkle formation. Adv Mater, 21, 2328 (2009). http://dx.doi.org/10.1002/adma.200803016.
  20. Zhang Y, Gomez L, Ishikawa FN, Madaria A, Ryu K, Wang C, Badmaev A, Zhou C. Comparison of graphene growth on singlecrystalline and polycrystalline Ni by chemical vapor deposition. J Phys Chem Lett, 1, 3101 (2010). http://dx.doi.org/10.1021/jz1011466.
  21. Zheng M, Takei K, Hsia B, Fang H, Zhang X, Ferralis N, Ko H, Chueh YL, Zhang Y, Maboudian R, Javey A. Metal-catalyzed crystallization of amorphous carbon to graphene. Appl Phys Lett, 96, 063110 (2010). http://dx.doi.org/10.1063/1.3318263.
  22. Shin HJ, Choi WM, Yoon SM, Han GH, Woo YS, Kim ES, Chae SJ, Li XS, Benayad A, Loc DD, Gunes F, Lee YH, Choi JY. Transfer-free growth of few-layer graphene by self-assembled monolayers. Adv Mater, 23, 4392 (2011). http://dx.doi.org/10.1002/adma.201102526.
  23. Seo JH, Kang JW, Kim DH, Jo S, Ryu SY, Lee HW, Kim CS. Simple wafer-scale growth and transfer of graphene film converted from spin-coated fullerene derivative. ECS Solid State Lett, 2, M13 (2013). http://dx.doi.org/10.1149/2.003302ssl.
  24. Perdigao LsMA, Sabki SN, Garfitt JM, Capiod P, Beton PH. Graphene formation by decomposition of $C_{60}$. J Phys Chem C, 115, 7472 (2011). http://dx.doi.org/10.1021/jp111462t.
  25. Lee H, Lee S, Hong J, Lee SG, Lee JH, Lee T. Graphene converted from the photoresist material on polycrystalline nickel substrate. Jpn J Appl Phys, 51, 06FD17 (2012). http://dx.doi.org/10.1143/JJAP.51.06FD17.
  26. Sun Z, Yan Z, Yao J, Beitler E, Zhu Y, Tour JM. Growth of graphene from solid carbon sources. Nature, 468, 549 (2010). http://dx.doi.org/10.1038/nature09579.
  27. Li X, Magnuson CW, Venugopal A, An J, Suk JW, Han B, Borysiak M, Cai W, Velamakanni A, Zhu Y, Fu L, Vogel EM, Voelkl E, Colombo L, Ruoff RS. Graphene films with large domain size by a two-step chemical vapor deposition process. Nano Lett, 10, 4328 (2010). http://dx.doi.org/10.1021/nl101629g.
  28. Zhang Y, Tang TT, Girit C, Hao Z, Martin MC, Zettl A, Crommie MF, Shen YR, Wang F. Direct observation of a widely tunable bandgap in bilayer graphene. Nature, 459, 820 (2009). http://dx.doi.org/10.1038/nature08105.
  29. Byun SJ, Lim H, Shin GY, Han TH, Oh SH, Ahn JH, Choi HC, Lee TW. Graphenes converted from polymers. J Phys Chem Lett, 2, 493 (2011). http://dx.doi.org/10.1021/jz200001g.
  30. Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK. The electronic properties of graphene. Rev Mod Phys, 81, 109 (2009). http://dx.doi.org/10.1103/RevModPhys.81.109.
  31. McCann E. Asymmetry gap in the electronic band structure of bilayer graphene. Phys Rev B, 74, 161403 (2006). http://dx.doi.org/10.1103/PhysRevB.74.161403.
  32. Oostinga JB, Heersche HB, Liu X, Morpurgo AF, Vandersypen LMK. Gate-induced insulating state in bilayer graphene devices. Nat Mater, 7, 151 (2008). http://dx.doi.org/10.1038/nmat2082.
  33. Castro EV, Novoselov KS, Morozov SV, Peres NMR, dos Santos JMBL, Nilsson J, Guinea F, Geim AK, Neto AHC. Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect. Phys Rev Lett, 99, 216802 (2007). http://dx.doi.org/10.1103/PhysRevLett.99.216802.
  34. Novoselov KS, McCann E, Morozov SV, Fal'ko VI, Katsnelson MI, Zeitler U, Jiang D, Schedin F, Geim AK. Unconventional quantum Hall effect and Berry's phase of $2\pi$ in bilayer graphene. Nat Phys, 2, 177 (2006). http://dx.doi.org/10.1038/nphys245.
  35. Ohta T, Bostwick A, Seyller T, Horn K, Rotenberg E. Controlling the electronic structure of bilayer graphene. Science, 313, 951 (2006). http://dx.doi.org/10.1126/science.1130681.
  36. Mak KF, Lui CH, Shan J, Heinz TF. Observation of an electricfield-induced band gap in bilayer graphene by infrared spectroscopy. Phys Rev Lett, 102, 256405 (2009). http://dx.doi.org/10.1103/PhysRevLett.102.256405.
  37. Luican A, Li G, Reina A, Kong J, Nair RR, Novoselov KS, Geim AK, Andrei EY. Single-layer behavior and its breakdown in twisted graphene layers. Phys Rev Lett, 106, 126802 (2011). http://dx.doi.org/10.1103/PhysRevLett.106.126802.
  38. Yan Z, Peng Z, Sun Z, Yao J, Zhu Y, Liu Z, Ajayan PM, Tour JM. Growth of bilayer graphene on insulating substrates. ACS Nano, 5, 8187 (2011). http://dx.doi.org/10.1021/nn202829y.
  39. Lee S, Lee K, Zhong Z. Wafer scale homogeneous bilayer graphene films by chemical vapor deposition. Nano Lett, 10, 4702 (2010). http://dx.doi.org/10.1021/nl1029978.
  40. Peng Z, Yan Z, Sun Z, Tour JM. Direct growth of bilayer graphene on $SiO_2$ substrates by carbon diffusion through nickel. ACS Nano, 5, 8241 (2011). http://dx.doi.org/10.1021/nn202923y.
  41. Yu Q, Lian J, Siriponglert S, Li H, Chen YP, Pei SS. Graphene segregated on Ni surfaces and transferred to insulators. Appl Phys Lett, 93, 113103 (2008). http://dx.doi.org/10.1063/1.2982585.

Cited by

  1. Value-added Synthesis of Graphene: Recycling Industrial Carbon Waste into Electrodes for High-Performance Electronic Devices vol.5, pp.1, 2015, https://doi.org/10.1038/srep16710