Browse > Article
http://dx.doi.org/10.5714/CL.2013.14.3.145

Graphene growth from polymers  

Seo, Hong-Kyu (Department of Materials Science and Engineering, Pohang University of Science and Technology)
Lee, Tae-Woo (Department of Materials Science and Engineering, Pohang University of Science and Technology)
Publication Information
Carbon letters / v.14, no.3, 2013 , pp. 145-151 More about this Journal
Abstract
Graphene is a fascinating material with excellent electrical, optical, mechanical, and chemical properties. Remarkable progress has been made in the development of methods for synthesizing large-area, high-quality graphene. Recently, the chemical vapor deposition method has opened up the possibility of using graphene for electronic devices and other applications. This review covers simple and inexpensive methods to grow graphene using polymers as solid carbon sources; which do not require an additional process to transfer graphene from the growth substrate to the receiver substrate.
Keywords
graphene; graphene synthesis; solid carbon sources; polymers;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK. Two-dimensional atomic crystals. Proc Natl Acad Sci U S A, 102, 10451 (2005). http://dx.doi.org/10.1073/pnas.0502848102.   DOI   ScienceOn
2 Hwang EH, Adam S, Das Sarma D. Carrier transport in twodimensional graphene layers. Phys Rev Lett, 98, 186806 (2007). http://dx.doi.org/10.1103/PhysRevLett.98.186806.   DOI   ScienceOn
3 Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL. Ultrahigh electron mobility in suspended graphene. Solid State Commun, 146, 351 (2008). http://dx.doi.org/10.1016/j.ssc.2008.02.024.   DOI   ScienceOn
4 Lee C, Wei XD, Kysar JW, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321, 385 (2008). http://dx.doi.org/10.1126/science.1157996.   DOI   ScienceOn
5 Geim AK. Graphene: status and prospects. Science, 324, 1530 (2009). http://dx.doi.org/10.1126/science.1158877.   DOI   ScienceOn
6 Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science, 306, 666 (2004). http://dx.doi.org/10.1126/science.1102896.   DOI   ScienceOn
7 Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS. Graphene-based composite materials. Nature, 442, 282 (2006). http://dx.doi.org/10.1038/nature04969.   DOI   ScienceOn
8 Blake P, Brimicombe PD, Nair RR, Booth TJ, Jiang D, Schedin F, Ponomarenko LA, Morozov SV, Gleeson HF, Hill EW, Geim AK, Novoselov KS. Graphene-based liquid crystal device. Nano Lett, 8, 1704 (2008). http://dx.doi.org/10.1021/nl080649i.   DOI   ScienceOn
9 Li X, Zhang G, Bai X, Sun X, Wang X, Wang E, Dai H. Highly conducting graphene sheets and Langmuir-Blodgett films. Nat Nanotechnol, 3, 538 (2008). http://dx.doi.org/10.1038/nnano.2008.210.   DOI   ScienceOn
10 Tung VC, Allen MJ, Yang Y, Kaner RB. High-throughput solution processing of large-scale graphene. Nat Nanotechnol, 4, 25 (2009). http://dx.doi.org/10.1038/nnano.2008.329.   DOI   ScienceOn
11 Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov AN, Conrad EH, First PN, de Heer WA. Electronic confinement and coherence in patterned epitaxial graphene. Science, 312, 1191 (2006). http://dx.doi.org/10.1126/science.1125925.   DOI   ScienceOn
12 Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn JH, Kim P, Choi JY, Hong BH. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 457, 706 (2009). http://dx.doi.org/10.1038/nature07719.   DOI   ScienceOn
13 Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, Kong J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett, 9, 30 (2009). http://dx.doi.org/10.1021/nl801827v.   DOI   ScienceOn
14 Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RS. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 324, 1312 (2009). http://dx.doi.org/10.1126/science.1171245.   DOI   ScienceOn
15 Li X, Cai W, Colombo L, Ruoff RS. Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett, 9, 4268 (2009). http://dx.doi.org/10.1021/nl902515k.   DOI   ScienceOn
16 Bae S, Kim H, Lee Y, Xu X, Park JS, Zheng Y, Balakrishnan J, Lei T, Ri Kim H, Song YI, Kim YJ, Kim KS, Ozyilmaz B, Ahn JH, Hong BH, Iijima S. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol, 5, 574 (2010). http://dx.doi.org/10.1038/NNANO.2010.132.   DOI
17 Bhaviripudi S, Jia X, Dresselhaus MS, Kong J. Role of kinetic factors in chemical vapor deposition synthesis of uniform large area graphene using copper catalyst. Nano Lett, 10, 4128 (2010). http://dx.doi.org/10.1021/nl102355e.   DOI   ScienceOn
18 Gao L, Ren W, Zhao J, Ma LP, Chen Z, Cheng HM. Efficient growth of high-quality graphene films on Cu foils by ambient pressure chemical vapor deposition. Appl Phys Lett, 97, 183109 (2010). http://dx.doi.org/10.1063/1.3512865.   DOI   ScienceOn
19 Chae SJ, Gunes F, Kim KK, Kim ES, Han GH, Kim SM, Shin HJ, Yoon SM, Choi JY, Park MH, Yang CW, Pribat D, Lee YH. Synthesis of large-area graphene layers on poly-nickel substrate by CVD: wrinkle formation. Adv Mater, 21, 2328 (2009). http://dx.doi.org/10.1002/adma.200803016.   DOI   ScienceOn
20 Zhang Y, Gomez L, Ishikawa FN, Madaria A, Ryu K, Wang C, Badmaev A, Zhou C. Comparison of graphene growth on singlecrystalline and polycrystalline Ni by chemical vapor deposition. J Phys Chem Lett, 1, 3101 (2010). http://dx.doi.org/10.1021/jz1011466.   DOI   ScienceOn
21 Zheng M, Takei K, Hsia B, Fang H, Zhang X, Ferralis N, Ko H, Chueh YL, Zhang Y, Maboudian R, Javey A. Metal-catalyzed crystallization of amorphous carbon to graphene. Appl Phys Lett, 96, 063110 (2010). http://dx.doi.org/10.1063/1.3318263.   DOI   ScienceOn
22 Shin HJ, Choi WM, Yoon SM, Han GH, Woo YS, Kim ES, Chae SJ, Li XS, Benayad A, Loc DD, Gunes F, Lee YH, Choi JY. Transfer-free growth of few-layer graphene by self-assembled monolayers. Adv Mater, 23, 4392 (2011). http://dx.doi.org/10.1002/adma.201102526.   DOI   ScienceOn
23 Seo JH, Kang JW, Kim DH, Jo S, Ryu SY, Lee HW, Kim CS. Simple wafer-scale growth and transfer of graphene film converted from spin-coated fullerene derivative. ECS Solid State Lett, 2, M13 (2013). http://dx.doi.org/10.1149/2.003302ssl.   DOI   ScienceOn
24 Perdigao LsMA, Sabki SN, Garfitt JM, Capiod P, Beton PH. Graphene formation by decomposition of $C_{60}$. J Phys Chem C, 115, 7472 (2011). http://dx.doi.org/10.1021/jp111462t.   DOI   ScienceOn
25 Lee H, Lee S, Hong J, Lee SG, Lee JH, Lee T. Graphene converted from the photoresist material on polycrystalline nickel substrate. Jpn J Appl Phys, 51, 06FD17 (2012). http://dx.doi.org/10.1143/JJAP.51.06FD17.   DOI
26 Sun Z, Yan Z, Yao J, Beitler E, Zhu Y, Tour JM. Growth of graphene from solid carbon sources. Nature, 468, 549 (2010). http://dx.doi.org/10.1038/nature09579.   DOI   ScienceOn
27 Li X, Magnuson CW, Venugopal A, An J, Suk JW, Han B, Borysiak M, Cai W, Velamakanni A, Zhu Y, Fu L, Vogel EM, Voelkl E, Colombo L, Ruoff RS. Graphene films with large domain size by a two-step chemical vapor deposition process. Nano Lett, 10, 4328 (2010). http://dx.doi.org/10.1021/nl101629g.   DOI   ScienceOn
28 Zhang Y, Tang TT, Girit C, Hao Z, Martin MC, Zettl A, Crommie MF, Shen YR, Wang F. Direct observation of a widely tunable bandgap in bilayer graphene. Nature, 459, 820 (2009). http://dx.doi.org/10.1038/nature08105.   DOI   ScienceOn
29 Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK. The electronic properties of graphene. Rev Mod Phys, 81, 109 (2009). http://dx.doi.org/10.1103/RevModPhys.81.109.   DOI
30 Byun SJ, Lim H, Shin GY, Han TH, Oh SH, Ahn JH, Choi HC, Lee TW. Graphenes converted from polymers. J Phys Chem Lett, 2, 493 (2011). http://dx.doi.org/10.1021/jz200001g.   DOI   ScienceOn
31 McCann E. Asymmetry gap in the electronic band structure of bilayer graphene. Phys Rev B, 74, 161403 (2006). http://dx.doi.org/10.1103/PhysRevB.74.161403.   DOI   ScienceOn
32 Oostinga JB, Heersche HB, Liu X, Morpurgo AF, Vandersypen LMK. Gate-induced insulating state in bilayer graphene devices. Nat Mater, 7, 151 (2008). http://dx.doi.org/10.1038/nmat2082.   DOI   ScienceOn
33 Castro EV, Novoselov KS, Morozov SV, Peres NMR, dos Santos JMBL, Nilsson J, Guinea F, Geim AK, Neto AHC. Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect. Phys Rev Lett, 99, 216802 (2007). http://dx.doi.org/10.1103/PhysRevLett.99.216802.   DOI   ScienceOn
34 Novoselov KS, McCann E, Morozov SV, Fal'ko VI, Katsnelson MI, Zeitler U, Jiang D, Schedin F, Geim AK. Unconventional quantum Hall effect and Berry's phase of $2\pi$ in bilayer graphene. Nat Phys, 2, 177 (2006). http://dx.doi.org/10.1038/nphys245.   DOI   ScienceOn
35 Ohta T, Bostwick A, Seyller T, Horn K, Rotenberg E. Controlling the electronic structure of bilayer graphene. Science, 313, 951 (2006). http://dx.doi.org/10.1126/science.1130681.   DOI   ScienceOn
36 Mak KF, Lui CH, Shan J, Heinz TF. Observation of an electricfield-induced band gap in bilayer graphene by infrared spectroscopy. Phys Rev Lett, 102, 256405 (2009). http://dx.doi.org/10.1103/PhysRevLett.102.256405.   DOI   ScienceOn
37 Luican A, Li G, Reina A, Kong J, Nair RR, Novoselov KS, Geim AK, Andrei EY. Single-layer behavior and its breakdown in twisted graphene layers. Phys Rev Lett, 106, 126802 (2011). http://dx.doi.org/10.1103/PhysRevLett.106.126802.   DOI   ScienceOn
38 Yan Z, Peng Z, Sun Z, Yao J, Zhu Y, Liu Z, Ajayan PM, Tour JM. Growth of bilayer graphene on insulating substrates. ACS Nano, 5, 8187 (2011). http://dx.doi.org/10.1021/nn202829y.   DOI   ScienceOn
39 Lee S, Lee K, Zhong Z. Wafer scale homogeneous bilayer graphene films by chemical vapor deposition. Nano Lett, 10, 4702 (2010). http://dx.doi.org/10.1021/nl1029978.   DOI   ScienceOn
40 Peng Z, Yan Z, Sun Z, Tour JM. Direct growth of bilayer graphene on $SiO_2$ substrates by carbon diffusion through nickel. ACS Nano, 5, 8241 (2011). http://dx.doi.org/10.1021/nn202923y.   DOI   ScienceOn
41 Yu Q, Lian J, Siriponglert S, Li H, Chen YP, Pei SS. Graphene segregated on Ni surfaces and transferred to insulators. Appl Phys Lett, 93, 113103 (2008). http://dx.doi.org/10.1063/1.2982585.   DOI   ScienceOn