• Title/Summary/Keyword: Methods: Numerical

Search Result 5,359, Processing Time 0.041 seconds

A Study on the Influence of Ground Subsidence and Stability of Buildings by Tunnel Excavation in Urban Area using Numerical Analysis and Neural Network Method (수치해석 및 인공신경망 기법을 이용한 도심지 터널 굴착에 의한 침하영향 및 연도변 건물 안정성 평가)

  • Park, Sung-Ryong;Kim, Eun-Kyum;Sa, Gong-Myung
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.585-594
    • /
    • 2007
  • This paper presents the methods which estimate the influence of ground subsidence and the stability of buildings by tunnel excavation in urban area. First, we study the behaviour of ground subsidence using neural network and numerical method. And we analyze the characteristic of both methods. Using the both methods, we evaluate the stability of buildings by subway tunnel excavation and we compare the results of the neural network and numerical analysis.

  • PDF

COMBINED LAPLACE TRANSFORM WITH ANALYTICAL METHODS FOR SOLVING VOLTERRA INTEGRAL EQUATIONS WITH A CONVOLUTION KERNEL

  • AL-SAAR, FAWZIAH M.;GHADLE, KIRTIWANT P.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.22 no.2
    • /
    • pp.125-136
    • /
    • 2018
  • In this article, a homotopy perturbation transform method (HPTM) and the Laplace transform combined with Taylor expansion method are presented for solving Volterra integral equations with a convolution kernel. The (HPTM) is innovative in Laplace transform algorithm and makes the calculation much simpler while in the Laplace transform and Taylor expansion method we first convert the integral equation to an algebraic equation using Laplace transform then we find its numerical inversion by power series. The numerical solution obtained by the proposed methods indicate that the approaches are easy computationally and its implementation very attractive. The methods are described and numerical examples are given to illustrate its accuracy and stability.

Study on Numerical Method for Combustion-Gas Flow Field of Granular Type Solid Propellant (과립형 고체추진제의 연소가스 유동장 해석을 위한 수치해석 기법 연구)

  • Sung, Hyung-Gun;Jang, Jin-Sung;Roh, Tae-Seong;Choi, Dong-Whan
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.551-554
    • /
    • 2008
  • In this study, numerical methods for the code development of the interior ballistics have been conducted. Mathematical models and numerical methods for the analysis technique of the granular solid propellants have been investigated. As the results of applying the methods of errors have been generated by calculation for the specific surface area of the granular solid propellants. To remove these error, the developed Eulerian-Larangian method for multiphase flows has been suggested.

  • PDF

Method of Numerical Simulation by Using the Local Harmonic Functions in the Cylindrical Coordinates (국소적 조화함수를 사용한 원통좌표계에서의 유동 해석)

  • Suh, Yong-Kweon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.3 s.258
    • /
    • pp.300-305
    • /
    • 2007
  • Many practical flow problems are defined with the circular boundary. Fluid flows within a circular boundary are however susceptible to a singularity problem when the cylindrical coordinates are employed. To remove this singularity a method has been developed in this study which uses the local harmonic functions in discretization of derivatives as well as interpolation. This paper describes the basic reason for introducing the harmonic functions and the overall numerical methods. The numerical methods are evaluated in terms of the accuracy and the stability. The Lamb-dipole flow is selected as a test flow. We will see that the harmonic-function method indeed gives more accurate solutions than the conventional methods in which the polynomial functions are utilized.

Dynamic sensitivity analysis and optimum design of aerospace structures

  • Gu, Yuanxian;Kang, Zhan;Guan, Zhenqun;Jia, Zhiwen
    • Structural Engineering and Mechanics
    • /
    • v.6 no.1
    • /
    • pp.31-40
    • /
    • 1998
  • The research and applications of numerical methods of design optimization on structural dynamic behaviors are presented in this paper. The emphasis is focused on the dynamic design optimization of aerospace structures, particularly those composed of composite laminate and sandwich plates. The methods of design modeling, sensitivity analysis on structural dynamic responses, and the optimization solution approaches are presented. The numerical examples of sensitivity analysis and dynamic structural design optimization are given to demonstrate the effectiveness of the numerical methods.

Noise Analysis of Intake System by Hybrid Method (하이브리드 방법을 이용한 배기계 소음 해석)

  • 이장명;한성수;임학종
    • Journal of KSNVE
    • /
    • v.9 no.2
    • /
    • pp.310-316
    • /
    • 1999
  • 4-Pole parameter method based on an acoustic theory is very popular for the analysis of the acoustic behavior of the car exhaust system. However, this method is applicable only for the simple shape of acoustic elements of the muffler. Numerical methods such as FEM(Finite Element Method) or BEM(Boundary Element Method) can also provide acceptable results for the acoustic analysis of the car exhaust system. Even though these numerical methods have benefits for the analysis of complicated shape of acoustic elements of the muffler, time consuming is another problem during modeling and numerical calculation. Combining benefits of both methods, the new code called the hybrid method for car exhaust system is introduced. And the developed code is utilized for calculation of the transmission loss of a main muffler of an automobile comparing with the experimental results.

  • PDF

NUMERICAL SOLUTIONS OF NONLINEAR VOLTERRA-FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS BY USING MADM AND VIM

  • Abed, Ayoob M.;Younis, Muhammed F.;Hamoud, Ahmed A.
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.1
    • /
    • pp.189-201
    • /
    • 2022
  • The aim of the current work is to investigate the numerical study of a nonlinear Volterra-Fredholm integro-differential equation with initial conditions. Our approximation techniques modified adomian decomposition method (MADM) and variational iteration method (VIM) are based on the product integration methods in conjunction with iterative schemes. The convergence of the proposed methods have been proved. We conclude the paper with numerical examples to illustrate the effectiveness of our methods.

Comprehensive studies of Grassmann manifold optimization and sequential candidate set algorithm in a principal fitted component model

  • Chaeyoung, Lee;Jae Keun, Yoo
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.6
    • /
    • pp.721-733
    • /
    • 2022
  • In this paper we compare parameter estimation by Grassmann manifold optimization and sequential candidate set algorithm in a structured principal fitted component (PFC) model. The structured PFC model extends the form of the covariance matrix of a random error to relieve the limits that occur due to too simple form of the matrix. However, unlike other PFC models, structured PFC model does not have a closed form for parameter estimation in dimension reduction which signals the need of numerical computation. The numerical computation can be done through Grassmann manifold optimization and sequential candidate set algorithm. We conducted numerical studies to compare the two methods by computing the results of sequential dimension testing and trace correlation values where we can compare the performance in determining dimension and estimating the basis. We could conclude that Grassmann manifold optimization outperforms sequential candidate set algorithm in dimension determination, while sequential candidate set algorithm is better in basis estimation when conducting dimension reduction. We also applied the methods in real data which derived the same result.

Methods of Design Optimality Evaluation for Caisson Structural Systems (케이슨 구조계의 설계 최적성 평가)

  • Choi Min-Hee;Ryu Yeon-Sun;Cho Hyun-Man;Na Won-Bae
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.89-96
    • /
    • 2005
  • Numerical procedure of design optimality evaluation is studied for caisson structural systems. Two kinds of evaluation methods can be considered; mathematical optimality criteria method (MOCM) and numerical optimization method (NOM). The choice of the method depends on the available information of the system MOCM can be used only when the information of all function values, gradients and Lagrange multipliers is available, which may not be realistic in practice. Therefore, in this study, NOMs are applied for the structural optimality evaluation, where only design variables are necessary. To this end, Metropolis genetic algorithm (MGA) is advantageously used and applied for a standard optimization model of caisson composite breakwater. In the numerical example, cost and constraint functions are assumed to be changed from the orignal design situation and their effects are evaluated for optimality. From the theoretical consideration and numerical experience, it is found that the proposed optimality evaluation procedure with MGA-based NOM is efficient and practically applicable.

  • PDF

TWO-DIMENSIONAL CAVITATION PREDICTION BASED ON APPROXIMATE JACOBIAN MATRIX IN TWO-FLUID TWO-PHASE FLOW MODELS (2-유체 2상-유동 모델에서 근사 Jacobian 행렬을 이용한 2차원 캐비테이션의 예측)

  • Yeom Geum-Su;Chang Keun-Shik
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.183-186
    • /
    • 2005
  • We developed an upwind numerical formulation based on the eigenvalues of the approximate Jacobian matrix in order to solve the hyperbolic conservation laws governing the two-fluid two-phase flow models. We obtained eight analytic eigenvalues in the two dimensions that can be used for estimate of the wave speeds essential in constructing an upwind numerical method. Two-dimensional underwater cavitation in a flow past structural shapes or by underwater explosion can be solved using this method. We present quantitative prediction of cavitation for the water tunnel wall and airfoils that has both experimental data as well as numerical results by other numerical methods and models.

  • PDF