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Abstract. The aim of the current work is to investigate the numerical study of a nonlin-

ear Volterra-Fredholm integro-differential equation with initial conditions. Our approxima-

tion techniques modified adomian decomposition method (MADM) and variational iteration

method (VIM) are based on the product integration methods in conjunction with iterative

schemes. The convergence of the proposed methods have been proved. We conclude the

paper with numerical examples to illustrate the effectiveness of our methods.

1. Introduction

Integral and integro-differential equations are important in many appli-
cations of applied mathematics. Since many physical problems are mod-
eled by integro-differential equations, the numerical solutions of such integro-
differential equations have been highly studied by many authors. In recent
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years, numerous works have been focusing on the development of more ad-
vanced and efficient methods for integral equations and integro-differential
equations, for example [2, 9, 13, 16, 19, 20, 21, 23].

In recent years, many authors focus on the development of numerical and
analytical techniques for integro-differential equations. For instance, we can
remember the following works. Abbasbandy and Elyas [1] studied some ap-
plications on VIM for solving system of nonlinear Volterra integro-differential
equations, Alao et al. [3] used ADM and VIM for solving integro-differential
equations, Salih and Mehmet [28] applied the Taylor method to solve the lin-
ear Volterra-Fredholm integro-differential equations, Mittal and Nigam [25]
applied the ADM to approximate solutions for fractional integro-differential
equations, and Behzadi et al. [5] solved some class of nonlinear Volterra-
Fredholm integro-differential equations by HAM. Moreover, several authors
have applied the ADM and VIM to find the approximate solutions of various
types of integro-differential equations [4, 6, 7, 8, 14, 15, 25].

In this paper, we consider nonlinear Volterra-Fredholm integro-differential
equation of the form:

k∑
j=0

ξj(x)u(j)(x) = f(x) + λ1

∫ x

a
K1(x, t)G1(u(t))dt

+λ2

∫ b

a
K2(x, t)G2(u(t))dt, (1.1)

with the initial conditions

u(r)(a) = br, r = 0, 1, 2, · · · , (k − 1), (1.2)

where u(j)(x) is the jth derivative of the unknown function u(x) that will be
determined, Ki(x, t), i = 1, 2 are the kernels of the equation, f(x) and ξj(x)
are analytic functions, G1 and G2 are nonlinear functions of u and a, b, λ1, λ2,
and br are real finite constants.

To obtain the approximate solution, we integrating (k)-times in the interval
[a, x] with respect to x we obtain,

u(x) = L−1
(
f(x)

ξk(x)

)
+
k−1∑
r=0

1

r!
(x− a)rbr+λ1L

−1
(∫ x

a

K1(x, t)

ξk(x)
G1(u(t))dt

)

+λ2L
−1
(∫ b

a

K2(x, t)

ξk(x)
G1(u(t))dt

)
−
k−1∑
j=0

L−1
(
ξj(x)

ξk(x)
u(j)n (x)

)
,(1.3)



Nonlinear Volterra-Fredholm integro-differential equations 191

where L−1 is the multiple integration operator given as follows:

L−1(·) =

∫ x

a

∫ x

a
· · ·
∫ x

a
(·)dtdt · · · dt (k − times).

2. Analysis of the methods

Some powerful methods have been focusing on the development of more
advanced and efficient methods for solving integro-differential equations such
as the MADM [2, 4, 6, 8, 14, 18, 22, 24, 25, 26, 29] and VIM [3, 7, 11, 12, 10].

2.1. Modified Adomian Decomposition Method (MADM). The mod-
ified decomposition method will facilitate the computational process and fur-
ther accelerate the convergence of the series solution. The MADM depends
mainly on splitting the function f(x) into two parts.

f(x) = f1(x) + f2(x). (2.1)

From Eq. (1.3) and Eq. (2.1), we obtain

u(x) = L−1
(
f1(x)

ξk(x)

)
+ L−1

(
f2(x)

ξk(x)

)
+

k−1∑
r=0

1

r!
(x− a)rbr

+λ1L
−1
(∫ x

a

K1(x, t)

ξk(x)
G1(u(t))dt

)
+λ2L

−1
(∫ b

a

K2(x, t)

ξk(x)
G1(u(t))dt

)
−
k−1∑
j=0

L−1
(
ξj(x)

ξk(x)
u(j)n (x)

)
.

We assume

G1(u(x)) =

∞∑
n=0

An, G2(u(x)) =

∞∑
n=0

Bn, (2.2)

where An, Bn, n ≥ 0 are the adomian polynomials determined formally as
follows:

An =
1

n!

[ dn
dµn

G1(
∞∑
i=0

µiui)
]∣∣∣
µ=0

, Bn =
1

n!

[ dn
dµn

G2(
∞∑
i=0

µiui)
]∣∣∣
µ=0

. (2.3)

The adomian polynomials were introduced in [17, 18, 29] as:

A0 = G1(u0);

A1 = u1G
′
1(u0);

A2 = u2G
′
1(u0) +

1

2!
u21G

′′
1(u0);

A3 = u3G
′
1(u0) + u1u2G

′′
1(u0) +

1

3!
u31G

′′′
1 (u0), ...
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and

B0 = G2(u0);

B1 = u1G
′
2(u0);

B2 = u2G
′
2(u0) +

1

2!
u21G

′′
2(u0);

B3 = u3G
′
2(u0) + u1u2G

′′
2(u0) +

1

3!
u31G

′′′
2 (u0), ...

The components u0, u1, u2, · · · are usually determined recursively by

u0 = L−1
(
f1(x)

ξk(x)

)
+
k−1∑
r=0

1

r!
(x− a)rbr,

u1 = L−1
(
f2(x)

ξk(x)

)
+ λ1L

−1
(∫ x

a

K1(x, t)

ξk(x)
A0(t)dt

)
+λ2L

−1
(∫ b

a

K2(x, t)

ξk(x)
B0(t)dt

)
−
k−1∑
j=0

L−1
(
ξj(x)

ξk(x)
u
(j)
0 (x)

)
,

un+1 = λ1L
−1
(∫ x

a

K1(x, t)

ξk(x)
An(t)dt

)
+ λ2L

−1
(∫ b

a

K2(x, t)

ξk(x)
Bn(t)dt

)
−
k−1∑
j=0

L−1
(
ξj(x)

ξk(x)
u(j)n (x)

)
, n ≥ 1.

Then, u(x) =
∑n

i=0 ui(x) as the approximate solution.

2.2. Variational Iteration Method (VIM). We consider the following
general differential equation:

Lu(t) +Nu(t) = f(t),

where L is a linear operator, N is a nonlinear operator and f(t) is inhomoge-
neous term. According to variational iteration method [3, 10, 27], the terms of
a sequence {un} are constructed such that this sequence converges to the exact
solution. The terms un are calculated by a correction functional as follows:

un+1(t) = un(t) +

∫ t

0
λ(τ)(Lun(τ) +Nũ(τ)− f(τ))dτ. (2.4)
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To obtain the approximation solution of IVP (1.1)− (1.2), according to the
VIM, the iteration formula (2.4) can be written as follows:

un+1(x) = un(x) + L−1
[
λ(x)

[ k∑
j=0

ξj(x)u(j)n (x)− f(x)

−λ1
∫ x

a
K1(x, t)G1(un(t))dt− λ2

∫ b

a
K2(x, t)G2(un(t))dt

]]
.

To find the optimal λ(x), we proceed as follows:

δun+1(x) = δun(x) + δL−1
[
λ(x)

[ k∑
j=0

ξj(x)u(j)n (x)− f(x)

−λ1
∫ x

a
K1(x, t)G1(un(t))dt− λ2

∫ b

a
K2(x, t)G2(un(t))dt

]]
= δun(x) + λ(x)δun(x)− L−1

[
δun(x)λ′(x)

]
. (2.5)

From Eq.(2.5), the stationary conditions can be obtained as follows:

λ′(x) = 0, and 1 + λ(x)|x=t = 0.

As a result, the Lagrange multipliers can be identified as λ(x) = −1, and
by substituting in Eq.(2.5), the following iteration formula is obtained:

u0(x) = L−1
[ f(x)

ξk(x)

]
+

k−1∑
r=0

(x− a)r

r!
br,

un+1(x) = un(x)− L−1
[ k∑
j=0

ξj(x)u(j)n (x)− f(x)

−λ1
∫ x

a
K1(x, t)G1(un(t))dt

−λ2
∫ b

a
K2(x, t)G2(un(t))dt

]
, n ≥ 0. (2.6)

The term
∑k−1

r=0
(x−a)r
r! br is obtained from the initial conditions, ξk(x) 6= 0.

Relation (2.6) will enable us to determine the components un(x) recursively
for n ≥ 0. Consequently, the approximation solution may be obtained by using
u(x) = limn→∞ un(x).

3. Convergence results

In this section, we shall give the convergence results of Eq. (1.1), with the
initial condition (1.2) and prove it.
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From Eq. (1.3), we assume:

L−1
[ ∫ x

a

1

ξk(x)
K1(x, t)G1(un(t))dt

]
=

∫ x

a

(x− t)k

k!ξk(x)
K1(x, t)G1(un(t))dt

and

k−1∑
j=0

L−1
[ ξj(x)

ξk(x)

]
u(j)(x) =

k−1∑
j=0

∫ x

a

(x− t)k−1ξj(t)
(k − 1)!ξk(t)

u(j)(t)dt.

We set,

Ψ(x) = L−1
[ f(x)

ξk(x)

]
+
k−1∑
r=0

(x− a)r

r!
br.

Before starting and proving the main results, we introduce the following
hypotheses:

(H1) There exist constants α, β and γj > 0, j = 0, 1, · · · , k such that, for
any u1, u2 ∈ C(J,R)

|G1(u1))−G1(u2))| ≤ α |u1 − u2| ,

|G2(u1)−G2(u2)| ≤ β |u1 − u2| ,∣∣Dj(u1)−Dj(u2)
∣∣ ≤ γj |u1 − u2| ,

we suppose that the nonlinear termsG1(u(x))), G2(u(x))) andDj(u) =

( dj

dxj
)u(x) =

∑∞
i=0 γij , (Dj is a derivative operator), j = 0, 1, · · · , k, are

Lipschitz continuous.

(H2) Suppose that for all a ≤ t ≤ x ≤ b, and j = 0, 1, · · · , k:∣∣∣∣λ1(x− t)kK1(x, t)

k!ξk(x)

∣∣∣∣ ≤ θ1,

∣∣∣∣λ1(x− t)kK1(x, t)

k!

∣∣∣∣ ≤ θ2,∣∣∣∣(x− t)k−1ξj(t)(k − 1)!ξk(t)

∣∣∣∣ ≤ θ3, ∣∣∣∣(x− t)k−1ξj(t)(k − 1)!

∣∣∣∣ ≤ θ4,∣∣∣∣λ2L−1[K2(x, t)

ξk(x)

]∣∣∣∣ ≤ θ5,
∣∣∣λ2L−1[K2(x, t)

]∣∣∣ ≤ θ6.
(H3) There exist three functions θ∗3, θ

∗
4, and γ∗ ∈ C(D,R+), the set of all

positive function continuous on D = {(x, t) ∈ R × R : 0 ≤ t ≤ x ≤ 1}
such that:

θ∗3 = max |θ3| , θ∗4 = max |θ4| , and γ∗ = max |γj | .

(H4) Ψ(x) is bounded function for all x in J = [a, b].
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Theorem 3.1. Suppose that (H1)− (H4), and if 0 < ψ < 1, hold, the series
solution u(x) =

∑∞
m=0 um(x) and ‖u1‖∞ <∞ obtained by the m-order defor-

mation is convergent, then it converges to the exact solution of the problem
(1.1)− (1.2).

Proof. Denote as (C[0, 1], ‖.‖) the Banach space of all continuous functions on
J, with |u1(x)| <∞ for all x in J .

First we define the sequence of partial sums {sn}, let sn and sm be arbitrary
partial sums with n ≥ m. We are going to prove that sn =

∑n
i=0 ui(x) is a

Cauchy sequence in this Banach space:

‖sn − sm‖∞ = max
∀x∈J

|sn − sm| = max
∀x∈J

 n∑
i=0

ui(x)−
m∑
i=0

ui(x)


= max
∀x∈J

 n∑
i=m+1

ui(x)


= max
∀x∈J

 n∑
i=m+1

∫ x

a

λ1(x− t)kK1(x, t)

k!ξk(x)
Ai−1dt

+
n∑

i=m+1

∫ b

a
λ2L

−1
[K2(x, t)

ξk(x)

]
Bi−1dt

−
k−1∑
j=0

∫ x

a

ξj(t)(x− t)k−1

(k − 1)!ξk(t)
L(i−1)Jdt


= max

∀x∈J

∫ x

a

λ1(x− t)kK1(x, t)

k!ξk(x)

( n−1∑
i=m

Ai

)
dt

+

∫ b

a
λ2L

−1
[K2(x, t)

ξk(x)

]( n−1∑
i=m

Bi

)
dt

−
k−1∑
j=0

∫ x

a

ξj(t)(x− t)k−1

(k − 1)!ξk(t)

( n−1∑
i=m

LiJdt
).

From (2.2), we have

n−1∑
i=m

Ai = G1(sn−1)−G1(sm−1),

n−1∑
i=m

Bi = G2(sn−1)−G2(sm−1),

n−1∑
i=m

Li = Dj(sn−1)−Dj(sm−1).



196 Ayoob M. Abed, Muhammed F. Younis and Ahmed A. Hamoud

So,

‖sn − sm‖∞ = max
x∈J

∣∣∣ ∫ x

0

λ1(x− t)kK1(x, t)

k!ξk(x)
[G1(sn−1)−G1(sm−1)]dt

+

∫ b

a
λ2L

−1
[K2(x, t)

ξk(x)

]
[G2(sn−1)−G2(sm−1)]dt

−
k−1∑
j=0

∫ x

a

ξj(t)(x− t)k−1

(k − 1)!ξk(t)
[Dj(sn−1)−Dj(sm−1)]dt

∣∣∣
≤ max

x∈J

∫ x

0

∣∣∣λ1(x− t)kK1(x, t)

k!ξk(x)

∣∣∣∣∣∣G1(sn−1)−G1(sm−1)
∣∣∣dt

+

∫ b

a

∣∣∣λ2L−1[K2(x, t)

ξk(x)

]∣∣∣∣∣∣G2(sn−1)−G2(sm−1)
∣∣∣dt

+
k−1∑
j=0

∫ x

a

∣∣∣ξj(t)(x− t)k−1
(k − 1)!ξk(t)

∣∣∣∣∣∣Dj(sn−1)−Dj(sm−1)
∣∣∣dt.

Let n = m+ 1. Then

‖sn − sm‖∞ ≤ ψ‖sm − sm−1‖∞
≤ ψ2‖sm−1 − sm−2‖∞
...

≤ ψm‖s1 − s0‖∞,

so,

‖sn − sm‖∞ ≤ ‖sm+1 − sm‖∞ + ‖sm+2 − sm+1‖∞ + · · ·+ ‖sn − sn−1‖∞
≤ [ψm + ψm+1 + · · ·+ ψn−1]‖s1 − s0‖∞
≤ ψm[1 + ψ + ψ2 + · · ·+ ψn−m−1]‖s1 − s0‖∞

≤ ψm(
1− ψn−m

1− ψ
)‖u1‖∞.

Since 0 < ψ < 1, we have (1− ψn−m) < 1, then

‖sn − sm‖∞ ≤
ψm

1− ψ
‖u1‖∞.

But |u1(x)| <∞, so, as m −→∞, then ‖sn − sm‖∞ −→ 0.
We conclude that {sn} is a Cauchy sequence in C[0, 1], therefore u =

limn→∞ un. Then, the series is convergence and the proof is complete. �
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Theorem 3.2. If problem (1.1)−(1.2) has a unique solution, then the solution
un(x) obtained from the recursive relation (2.6) using VIM converges when
0 < φ = (αθ5 + βθ6 + kγ∗θ∗4)(b− a) < 1.

Proof. We have from equation (2.6):

un+1(x)− u(x) = un(x)− u(x)−
(
L−1

[ k∑
j=0

ξj(x)[u(j)n (x)− u(j)(x)]
]

−L−1
[
λ1

∫ x

a
K1(x, t)[G1(un(t))−G1(u(t))]dt

−L−1
[
λ2

∫ b

a
K2(x, t)[G2(un(t))−G2(u(t))dt]

])
.

If we set, ξk(x) = 1, and Wn+1(x) = un+1(x) − u(x), Wn(x) = un(x) − u(x)
since Wn(a) = 0, then

Wn+1(x) = Wn(x) +

∫ x

a

λ1K1(x, t)(x− t)k

k!
[G1(un(t))−G1(u(t))]dt

+

∫ b

a
λ2L

−1
[
K2(x, t)[G2(un(t))−G2(u(t))dt]

]
−
k−1∑
j=0

∫ x

a

×ξj(t)(x− t)
k−1

(k − 1)!
[Dj(un(t))−Dj(u(t))]dt− (Wn(x)−Wn(a)).

Therefore,∣∣∣Wn+1(x)
∣∣∣ ≤ ∫ x

a

∣∣∣λ1K1(x, t)(x− t)k

k!

∣∣∣∣∣∣Wn

∣∣∣αdt
+

∫ b

a

∣∣∣λ2L−1[∣∣∣K2(x, t)
∣∣∣∣∣∣Wn

∣∣∣βdt]
+
k−1∑
j=0

∫ x

a

∣∣∣ξj(t)(x− t)k−1
(k − 1)!

∣∣∣max |γj |
∣∣∣Wn

∣∣∣dt
≤

∣∣∣Wn

∣∣∣[ ∫ x

a
αθ5dt+

∫ b

a
βθ6dt+

k−1∑
j=0

∫ x

a
θ∗4 max |γj |

]
≤ |Wn|(αθ5 + βθ6 + kγ∗θ∗4)(b− a) = |Wn|φ.

Hence,

‖Wn+1‖ = max
∀x∈J

|Wn+1(x)| ≤ φmax
∀x∈J

|Wn(x)| = φ‖Wn‖.

Since 0 < φ < 1, ‖Wn‖ −→ 0. So, the series converges and the proof is
complete. �
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4. Applications

Example 4.1. Consider the following Volterra-Fredholm integro-differential
equation.

u′(x) + xu(x) = 2x+ x3 − x5

5
− 0.97

7
x+

∫ x

0
u2(t)dt+

∫ 0.9

0
xu3(t)dt,

with the initial condition u(0) = u′(0) = 0 and the the exact solution is
u(x) = x2.

Table 1. Numerical Results of the Example 4.1.

x Exact solution MDM VIM
0.1 0.010000 0.016377 0.010024
0.2 0.040000 0.046990 0.040394
0.3 0.090000 0.094713 0.091969
0.4 0.160000 0.148751 0.151274
0.5 0.250000 0.236624 0.243752
0.6 0.360000 0.342563 0.350874
0.7 0.490000 0.478846 0.483681
0.8 0.640000 0.635372 0.630257
0.9 0.810000 0.790145 0.801487

Figure 1. Comparison Between MADM and VIM, for Exam-
ple 4.1.
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Example 4.2. Consider the nonlinear Volterra-Fredholm integro-differential
equation:

(x3 − 1)u(4)(x) + (x2 + 1)u′′(x) = e−x(x2 + x3)− x2

2e2
− (0.130639)x

+

∫ x

0
[u(t)]2dt+

∫ 0.5

0
xt(1 + u2(t))dt,

with the initial conditions: u(0) = u′′(0) = 1, u′(0) = u′′′(0) = −1, The exact
solution is u(x) = e−x.

Table 2. Numerical Results of the Example 4.2.

x Exact solution MADM VIM
0.05 0.951229 0.908237 0.948796
0.1 0.904837 0.921381 0.908269
0.2 0.818731 0.796469 0.815826
0.3 0.740818 0.708649 0.739765
0.4 0.670320 0.649382 0.663792
0.5 0.606531 0.579846 0.607912

Figure 2. Comparison Between MADM and VIM, for Exam-
ple 4.2.
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5. Concluding remarks

In this work, we have examined a few recent familiar numerical methods for
solving integro-differential equations. The numerical studies showed that all
the methods give highly accurate solutions for given equations. The MADM
and the VIM are uncomplicated and comfortable. Despite this, they are not
converging to a closed form. One advantage of VIM is that the initial so-
lution can be freely chosen with some unknown parameters. An interesting
point about this method is that with few number of iterations. The compar-
ison reveals that although the numerical results of these methods are similar
approximately, VIM is the easiest, the most efficient and convenient.

The problem considered in this paper can be generalized to a higher di-
mension involving a general formulation of fractional derivative with respect
to another function. Also, study nonlinear fractional systems of Volterra-
Fredholm integro-differential equations with nonlocal conditions is a direction
which we are working on.
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