• Title/Summary/Keyword: Method of Moments

Search Result 1,135, Processing Time 0.03 seconds

Distortional buckling of I-steel concrete composite beams in negative moment area

  • Zhou, Wangbao;Li, Shujin;Huang, Zhi;Jiang, Lizhong
    • Steel and Composite Structures
    • /
    • v.20 no.1
    • /
    • pp.57-70
    • /
    • 2016
  • The predominant type of buckling that I-steel concrete composite beams experience in the negative moment area is distortional buckling. The key factors that affect distortional buckling are the torsional and lateral restraints by the bottom flange. This study thoroughly investigates the equivalent lateral and torsional restraint stiffnesses of the bottom flange of an I-steel concrete composite beam under negative moments. The results show a coupling effect between the applied forces and the lateral and torsional restraint stiffnesses of the bottom flange. A formula is proposed to calculate the critical buckling stress of the I-steel concrete composite beams under negative moments by considering the lateral and torsional restraint stiffnesses of the bottom flange. The proposed method is shown to better predict the critical bending moment of the I-steel composite beams. This article introduces an improved method to calculate the elastic foundation beams, which takes into account the lateral and torsional restraint stiffnesses of the bottom flange and considers the coupling effect between them. The results show a close match in results from the calculation method proposed in this paper and the ANSYS finite element method, which validates the proposed calculation method. The proposed calculation method provides a theoretical basis for further research on distortional buckling and the ultimate resistance of I-steel concrete composite beams under a variable axial force.

Study on Feasibility of Applying Function Approximation Moment Method to Achieve Reliability-Based Design Optimization (함수근사모멘트방법의 신뢰도 기반 최적설계에 적용 타당성에 대한 연구)

  • Huh, Jae-Sung;Kwak, Byung-Man
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.2
    • /
    • pp.163-168
    • /
    • 2011
  • Robust optimization or reliability-based design optimization are some of the methodologies that are employed to take into account the uncertainties of a system at the design stage. For applying such methodologies to solve industrial problems, accurate and efficient methods for estimating statistical moments and failure probability are required, and further, the results of sensitivity analysis, which is needed for searching direction during the optimization process, should also be accurate. The aim of this study is to employ the function approximation moment method into the sensitivity analysis formulation, which is expressed as an integral form, to verify the accuracy of the sensitivity results, and to solve a typical problem of reliability-based design optimization. These results are compared with those of other moment methods, and the feasibility of the function approximation moment method is verified. The sensitivity analysis formula with integral form is the efficient formulation for evaluating sensitivity because any additional function calculation is not needed provided the failure probability or statistical moments are calculated.

Numerical Simulation of Radar Backscattering from Oil Spills on Sea Surface for L-band SAR (기름이 유출된 바다 표면의 L-밴드 전파 산란에 대한 수치해석적 연구)

  • Park, Seong-Min;Yang, Chan-Su;Oh, Yi-Sok
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.1
    • /
    • pp.21-27
    • /
    • 2010
  • This paper presents a numerical simulation of the radar backscattering from oil spills on ocean surface. At first, a one-dimensionally rough sea surface is numerically generated for a given wind speed at HEBEI SPIRIT accident. Then, an oil-spilled sea surface is represented with a two-layered medium, which is generated by adding a thin low-dielectric oil layer on the randomly-rough highdielectric sea surface. The backscattering coefficients of various oil-spilled sea surfaces are obtained using the Method of Moments and Monte Carlo technique for various surface roughness, oil-layer thicknesses, frequencies, polarizations and incidence angles. The numerical method is verified with theoretical models for simple structures. The reduction of the backscattering coefficients due to the lowdielectric oil-layers on sea surfaces has been analyzed. These numerical results will help to detect any oil spills on sea surfaces, and consequently, to classify SAR images.

Generalization of the statistical moment-based damage detection method

  • Zhang, J.;Xu, Y.L.;Xia, Y.;Li, J.
    • Structural Engineering and Mechanics
    • /
    • v.38 no.6
    • /
    • pp.715-732
    • /
    • 2011
  • A novel structural damage detection method with a new damage index has been recently proposed by the authors based on the statistical moments of dynamic responses of shear building structures subject to white noise ground motion. The statistical moment-based damage detection (SMBDD) method is theoretically extended in this paper with general application. The generalized SMBDD method is more versatile and can identify damage locations and damage severities of many types of building structures under various external excitations. In particular, the incomplete measurements can be considered by the proposed method without mode shape expansion or model reduction. Various damage scenarios of two general forms of building structures with incomplete measurements are investigated in consideration of different excitations. The effects of measurement noise are also investigated. The damage locations and damage severities are correctly identified even when a high noise level of 15% and incomplete measurements are considered. The effectiveness and versatility of the generalized SMBDD method are demonstrated.

Tracking of Moving Objects Using Morphological Segmentation, Statistical Moments and Hough Transform

  • Ahmad, Muhammad Bilal;Chang, Min-Hyuk;Park, Jong-An
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1377-1381
    • /
    • 2003
  • This paper describes real time object tracking of 3D objects in 2D image sequences. The moving objects are segmented from the image sequence using morphological operations. The moving objects are segmented by the method of differential image followed by the process of morphological dilation. The moving objects are recognized and tracked using statistical moments. The direction of moving objects are determined by the Hough transform. The straight lines in the moving objects are found with the help of Hough transform. The direction of the moving object is calculated from the orientation of the straight lines in the direction of the principal axes of the moving objects. The direction of the moving object and the displacement of the object in the image sequence is used to calculate the velocity of the moving objects. The simulation results of the proposed method are promising on the test images.

  • PDF

Műller Formulation for Analysis of Scattering from 3-D Dielectric Objects with Triangular Patching Model

  • Lee, Chang-Hyun;Cho, Jin-Sang;Jung, Baek-Ho;Sarkar Tapan K.
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.129-135
    • /
    • 2007
  • In this paper, we present a set of numerical schemes to solve the Muller integral equation for the analysis of electromagnetic scattering from arbitrarily shaped three-dimensional (3-D) dielectric bodies by applying the method of moments (MoM). The piecewise homogeneous dielectric structure is approximated by planar triangular patches. A set of the RWG (Rao, Wilton, Glisson) functions is used for expansion of the equivalent electric and magnetic current densities and a combination of the RWG function and its orthogonal component is used for testing. The objective of this paper is to illustrate that only some testing procedures for the Muller integral equation yield a valid solution even at a frequency corresponding to an internal resonance of the structure. Numerical results for a dielectric sphere are presented and compared with solutions obtained using other formulations.

A Study of Optimum Electromagnetic Field Analysis and Application of the Electret Sensor Using Computer Simulation (컴퓨터 시뮬레이션에 의한 일렉트렛트 센서의 최적 전계 해석과 응용)

  • 정동회;김상걸;김성렬;김용주;김영천;이준웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.435-438
    • /
    • 1998
  • In this paper, Electret is formed to range voltage -5[kV] to -8[kV] by corona charging in PTFE film and sensor is manufactured by method of moments in sensing infra sonic. Charges of charged film are calculated also TSC measurement and induced potential of sensing electrode according to the charges is become aware of computer simulation. Electret Infra Sonic Transducer, which is designed and manufactured according to the potential and electric field simulation in using method of moments, is proved as it is effectively. Because sensitivity that measured under 10[Hz] is that average value of sensitivity rising rate is 6.34 [dB/oct] as average value is $\pm$1 [dB/oct] range -5[kV] to -8[kV] in corona charging film. As a result, it is believed that characteristic of acquired transducer can be application of medical treatment, industry, and animal life researches and the study of noise elimination, what's more, is required.

  • PDF

On the non-linearities of ship's restoring and the Froude-Krylov wave load part

  • Matusiak, Jerzy Edward
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.3 no.1
    • /
    • pp.111-115
    • /
    • 2011
  • When formulating a general, non-linear mathematical model of ship dynamics in waves the hydrostatic forces and moments along with the Froude-Krylov part of wave load are usually concerned. Normally radiation and the diffraction forces are regarded as linear ones. The paper discusses briefly few approaches, which can be used in this respect. The concerned models attempt to model the non-linearities of the surface waves; both regular and the irregular ones, and the nonlinearities of the restoring forces and moments. The approach selected in the Laidyn method, which is meant for the evaluation of large amplitude motions in the 6 degrees-of-freedom, is presented in a bigger detail. The workability of the method is illustrated with the simulation of ship motions in irregular stern quartering waves.

Absorptive Capacity Effects of Foreign Direct Investment in Selected Asian Economies

  • ROY, Samrat
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.11
    • /
    • pp.31-39
    • /
    • 2021
  • This study empirically examines the proposition that the domestic fundamentals of a nation can emerge as absorptive capacity factors to reap the benefits of inward FDI. The study is contextualized in Asia, set from1982 to 2017, and data is grouped into low-income and lower-middle-income economies, in comparison to high-income and upper-middle-income economies, catering to different geographical regions within Asia. The investigation is based on a series of absorptive capacity factors such as infrastructure, human capital, domestic credit, and health indicator. The methodological analysis is premised on dynamic panel structure and employs the Generalized Method of Moments (GMM) estimation technique. The empirical findings suggest that that the infrastructure variable appears to be the major absorptive capacity factor for both groups of countries. The health indicator, on the other hand, can help reap the benefits of inward FDI, but only if the threshold level is met. The selected economies must achieve this threshold level to reap the benefits of FDI. To absorb the benefits of inward FDI, countries must be proactive in providing sound infrastructure and implementing proper healthcare measures.

Fast Computation of Zernike Moments Using Three Look-up Tables

  • Kim, Sun-Gi;Kim, Whoi-Yul;Kim, Young-Sum;Park, Chee-Hang
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.6
    • /
    • pp.156-161
    • /
    • 1997
  • Zernike moments have been one of the most commonly used feature vectors for recognizing rotated patterns due to its rotation invariant characteristics. In order to reduce its expensive computational cost, several methods have been proposed to lower the complexity. One of the methods proposed by mukundan and K. R. Ramakrishnan[1], however, is not rotation invariant. In this paper, we propose another method that not only reduces the computational cost but preserves the rotation invariant characteristics. In the experiment, we compare our method with others, in terms of computing time and the accuracy of moment feature at different rotational angle of an object in image.

  • PDF