Journal of Electrical Engineering & Technology, Vol. 2, No. 1, pp. 129~135, 2007 129

Miiller Formulation for Analysis of Scattering from 3-D Dielectric
Objects with Triangular Patching Model

Chang-Hyun Lee*, Jin-Sang Cho**, Baek-Ho J ungJr and Tapan K. Sarkar***

Abstract — In this paper, we present a set of numerical schemes to solve the Miiller integral equation
for the analysis of electromagnetic scattering from arbitrarily shaped three-dimensional (3-D) dielectric
bodies by applying the method of moments (MoM). The piecewise homogeneous dielectric structure is
approximated by planar triangular patches. A set of the RWG (Rao, Wilton, Glisson) functions is used
for expansion of the equivalent electric and magnetic current densities and a combination of the RWG
function and its orthogonal component is used for testing. The objective of this paper is to illustrate
that only some testing procedures for the Miiller integral equation yield a valid solution even at a
frequency corresponding to an internal resonance of the structure. Numerical results for a dielectric
sphere are presented and compared with solutions obtained using other formulations.
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1. Introduction

In the analysis of dielectric bodies at frequencies that
correspond to an internal resonance of the structure,
spurious solutions are obtained for the electric field
integral equation (EFIE) or the magnetic field integral
equation (MFIE). One possible way of obtaining a unique
solution at an internal resonant frequency of the structure
under analysis is to combine a weighted linear sum of the
EFIE with MFIE and thereby eliminate the spurious
solutions. This combination results in the combined field
integral equation (CFIE). One may also obtain the
PMCHW (Poggio, Miller, Chang, Harrington, Wu) and
Miiller integral equations [1], [2]. Many publications are
available for the analysis of a dielectric body using the
CFIE. However, most of the earlier techniques have been
utilized to solve two-dimensional problems and bodies of
revolution.

To analyze 3-D objects using a surface integral equation,
triangular patch modeling can be used. The triangular
patches have the ability to conform to any geometrical
surface or boundary, permitting easy descriptions of the
patching scheme to the computer. A suitable basis function
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for the triangle patch is the RWG function presented in {3].
Sheng et al. proposed the CFIE for the analysis of
scattering from arbitrarily shaped 3-D dielectric bodies [4].
In their work, the electric and magnetic currents are
expanded using the RWG functions, and a combination of
RWG and its orthogonal component, which is point-wise

- spatially orthogonal to the original set, is used for testing.

Jung et al. also investigated a set of CFIE formulations by
choosing a combination of testing functions and dropping
one of the testing terms in the CFIE [5]. Although several
integral equation formulations have been used for 3-D
dielectric bodies [4-8], the Miiller integral equation has not
been applied for the analysis of scattering by arbitrarily
shaped 3-D dielectric objects with triangular patch
modeling.

In this paper, we present a numerical scheme to solve the
Miiller integral equation for the analysis of electromagnetic
scattering from arbitrarily shaped three-dimensional (3-D)
piecewise homogeneous dielectric objects. For this, the
equivalent currents are expanded using the RWG functions,
and a combination of the RWG function and its orthogonal
component is used for testing. We investigate all possible
cases of the testing procedure using the four parameters in
conjunction with the testing functions. In the next section,
we describe the integral equation formulations and testing
procedures. Section 3 presents numerical results and
compares them. Finally, conclusions are presented in
section 4.

2. Integral Equations

In this section, we discuss the integral equations for a
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dielectric  scatterer, which is illuminated by an
electromagnetic wave [5]. We consider a homogeneous
dielectric body with a permittivity &, and a permeability

M, placed in an infinite homogeneous medium with a

permittivity & and a permeability g, as shown in Fig. 1.
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Fig. 1 Homogeneous dielectric body illuminated by an
electromagnetic wave.

By invoking the equivalence principle, the integral
equation is formulated in terms of the equivalent electric
and magnetic current densities J and M on the surface
S of the dielectric body. By enforcing the continuity of
the tangential electric and magnetic fields at S, the
following integral equations are obtained:

[-E@.m] =[E] (1)
[-E50,M)] =0 @
[-H;@, M)]m = [H‘:Im 3
[FH, M) =0 @

where E' and H' are the incident electric and magnetic
fields, respectively. The subscript ‘tan’ denotes the
tangential component. The scattered electric and magnetic

fields, E; and H, are given by

E;(J)=—joA, -V, )
E{(M) = -V xF, ©)
H; (M) = - joF, V¥, @
H@)=—VxA, ®)

14

where v is 1 or 2. In Equations (5) to (8), A, and F,

are the magnetic and electric vector potentials, and &,

and ¥, are the electric and magnetic scalar potentials,
respectively.

In (1)-(4), there are two unknowns J and M, and
four equations relating them. It is possible to develop
various combinations for the solution of these equations [1],
[2]. If we take only two equations, (1) and (2), we have the
EFIE formulation. Dual to the EFIE formulation, we can
obtain the MFIE formulation by choosing only (3) and (4).
However, both EFIE and MFIE formulations fail at
frequencies at which the surface S, when covered by a
perfect electric conductor and filled with the materials of
the exterior medium, forms a resonant cavity. For the CFIE
formulation, a set of two integral equations are formed
from the set (1)-(4) using the following form

(1-x)[-E;@,M)]|_+xn, [-HI,M)]

_ (1—K)[E"]m+ml[H"]m,v=1 )]
- 0,v=2

where x is the usual combination parameter, which can
have any value between 0 and 1, and 7, is the wave
impedance of region v . As an alternative way of
combining the four equations, the set of four equations is
reduced to two by adding (1) to (2) and (3) to (4). This
gives a pair of equations

[-E[@,M)-aE I3, M) =[E'] (10)

[FH@.M)-pH0,M] =[H] D

tan

where a=¢/¢g,and =y /p,. This is termed as the
Miiller formulation [2]. If a = f =1, then Egs. (10) and
(11) become the PMCHW formulation.

The surface of the dielectric structure to be analyzed is
approximated by planar triangular patches. As in [3], we
use the RWG function, f, , associated with the n-th
common edge as the basis function. In general, the electric
current density J and the magnetic current density M
on the dielectric structure may be approximated in terms of
this basis function as

10 =374 (12)
M) =Y Mf, 1) (13)

where J, and M, are constants yet to be determined

and N is the number of edges on the surface for the
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triangulated model approximating the surface of the
dielectric body. In this work all of the equivalent currents,
J and M, are expanded as in (12) and (13). The next
step in the numerical implementation scheme is to develop
a testing procedure to transform the operator equation into
a matrix equation using the MoM. In the CFIE formulation,
(9), we may use a combination of RWG and its orthogonal
component as the testing function to convert the integral
equation into a matrix equation. The orthogonal function

associated with the n-#4 common edge is defined through

g, =nxf . Here n is the normal unit pointing outward

from the surface. The various numerical implementation
schemes to solve the CFIE have been investigated in [4]
and [5].

Now we consider the testing procedure for the Miiller
equation. By substituting (1)-(8) into (10) and (11) and
extracting the Cauchy principal value from the curl term,
we may rewrite (10) and (11) as, respectively,

[jw(Al +aA, )+ V(P +a¢2)+(1_a)%an

(14)
1 1 ;
+PV| —VxF +a—VxF, :[E]
& & . tan “

[jco(F1 +BF,)+V (¥, +ﬁ¥’2)—(1—ﬂ)%nxJ

(15)

1 i i

—PV| —VxA +B—VxA, || =[H]
H H, wan .

where PV denotes the principal value. In the PMCHW

formulation, a = f=1. Therefore, from (14) and (15) we

obtain

v=l £,

v

i{ijv +Va, +PV[LVXFVH =[] s

M

{ja)Fv +VY, +PV(iVxAVH =[w'] an
H, an o

]

v

In this PMCHW integral equation, the RWG function is
used as the testing functions [4-6], yielding an accurate and
stable solution. However, we need the spatially orthogonal
component g in addition to the RWG function for the
Miiller equation in order to test the third term nxM and
nxJ in (14) and (15) as well. Now, we present a general
expression for testing Miiller equations using the following

Table 1 Testing method for various integral equations and the average difference of bistatic RCS between Mie series and

numerical solutions for the dielectric sphere.

Formulation Testing method ARCS (dBm?) | Example
CFIE <f, +g,. E> <-f +g,. H> 0.44
| PMCHW <f , E> <f , H> 0.19 i
ig.
TETH <f,, E> <f,, H> 0.24
NENH <g,, E> <g ., H> 2.10
<f, +g,, H> 0.12 )
<f,+g,. E> Fig. 4(a)
TENE <fm_gm’ H> 0.14
-THNH <f +g , H> 0.10 .
<f,-g,. E> Fig. 4(b)
<f,-g,. H> 0.16
<f +g, , E> 0.31 ,
Miiller TENE-TH <f , H> Fig. 5(a)
<f, -g,.. E> 0.34
<f, +g,., E> 2.38 ,
TENE-NH <g , H> Fig. 5(b)
<f,-g,. E> 2.15
<f +g, H> 0.14 _
TE-THNH <f , E> Fig. 6(a)
<f,-g,, H> 0.19
<f +g,, H> 1.62 .
NE-THNH <g , E> Fig. 6(b)
<f, —-g,, H> 2.07
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four parameters in conjunction with the testing functions as

(£l + 2580 —E/ (9, M) = aE5 (3, M)

. (18
= <fEfm + 8r8m> El> )

(Sl + s —H; (3, M) - BH3(J, M)

4 19)
=/l + 48, H')

where the testing coefficients, f,, g., fy, and g,
may be +1 or —1. This equation may be termed as the
TENE-THNH formulation as in [5]. By choosing different
testing coefficients, we have four different cases for the
Miiller formulation. They are summarized along with the
appropriate testing coefficients in Table 1. It was also
suggested to drop one of the testing terms in the CFIE
formulation {4, 5]. Applying this scheme to (18) and (19),
we obtain four formulations named as TENE-TH ( g,, =0),
TENE-NH ( f,, =0), TE-THNH (g, =0), and NE-THNH
( fz =0), depending on which term is neglected. By a
selecting a different sign for the testing coefficients, one
may have eight possible cases of testing with different

testing coefficients, which are summarized in Table 1. In
the CFIE formulation, one may choose f +g  for the

electric field part and —f"; +g, for the magnetic field part

as the testing function [5]. Note it is possible to choose the
testing functions as f, —g, for the electric field part and

f,+g, forthe magnetic field part as in [5].

3. Numerical Examples

In this section, we present and compare the numerical
results obtained from several integral equation
formulations discussed in the above section. To illustrate
the methodology, we consider a dielectric sphere having a
diameter of 1 m and a relative permittivity &, =4, centered

at the origin, as shown in Fig. 2. The surface of the sphere
is modeled with 1,224 triangular patches, which resulted in
a total of 1,836 edges. In the numerical calculation, the
sphere is illuminated from the top by an incident x -

polarized plane wave with the propagation vector k=-7.
The numerical results to be shown are the bistatic radar
cross section (RCS) solutions of the sphere at 262 MHz,
which is the first resonant frequency of the sphere, Table 1
also shows the average difference between the numerical
and Mie solutions for the bistatic RCS of the sphere at the
¢=0" plane. The averaged difference of the bistatic RCS

is computed by using the definition

f“ [RCS(Mie) ~ RCS(Numerical)|

ARCS =-L . 7 (20)

where M is the number of samples. In all the legends of
figures to be shown, the four numbers in the parentheses

mean the testing coefficients, ( fz, &, Jfu> & )
introduced in (18) and (19).

05

0 “0
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Fig. 2 Triangular surface patching of a dielectric sphere
with & =4, 0.5 m of a radius. 1,224 patches and

1,836 edges.
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Fig. 3 Bistatic RCS of the dielectric sphere computed by

CFIE, PMCHW, and Miiller (TETH and NENH)

formulations.

As a first example, Fig. 3 shows the bistatic RCS
solutions obtained from CFIE, PMCHW and Miiller
(TETH and NENH) formulations, and compares those with
the Mie series solution. The CFIE solution is computed
using the testing coefficients as f, =1, g.=1, f,=-1,
and g, =1 with the combination parameter of x=0.5 in

9). If we look carefully at Fig. 3, we observe there is an
agreement between the Miiller (TETH) and PMCHW
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solutions. The reason for this is that the RWG function
does not test the term nxM and nxJ in (14) and (15)
well, resulting in a solution similar to the PMCHW. All of
the numerical results except the NENH do not exhibit the
spurious resonance and agree well with the Mie solution.

Bt

N

0 20 40 60 80 100 120 140 160 180
0 (degree)

(@)

r— T —

RCS [d

T

0 20 40 60 80 100 120 140 160 180
o (degree)

0 _

(b)
Fig. 4 Bistatic RCS of the dielectric sphere computed by
Miiller formulations (TENE-THNH). (a) <f, +g,,,
E> and <f_*g , H> (b) <f —-g , E>

and <f g , H>

As a second example, Fig. 4 shows the bistatic RCS
solutions computed from the four cases of TENE-THNH
formulation, and compares them with the Mie solution. All
of the numerical results using the Miiller equation do not
exhibit the spurious resonance and agree well with the Mie
solution. It is difficult to distinguish between the solutions.
We also observe that the average difference for the four
cases is smaller than that of the PMCHW and CFIE
formulations as presented in Table 1. However, solutions
for the equivalent currents using the two cases,

(i) <f,-g,, E>and<f +g , H>
(i)<f +g , E>and<f -g , H>

are unstable in the low frequency region (0-100 MHz), not
shown here.
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Fig. 5 Bistatic RCS of the dielectric sphere computed by
Miiller formulations. (a) TENE-TH, <f, +g, ,
E>and <f , H> (b) TENE-NH, <f_ *g .,

E>and <g,, H>
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o Mie
Muller (0.1,1,1)
..... Muller (0,1,1-1)
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Fig. 6 Bistatic RCS of the dielectric sphere computed by
Miiller formulations. (a) TE-THNH, <f_, E>
and <f_ +g . H> (b)NE-THNH, <g, , E>
and <f +g , H>

Lastly, Figs. 5 and 6 show the bistatic RCS solutions
using the scheme that drops one of the testing terms (8
cases). In Figs. 5(a) and 6(a), we observe that the TENE-
TH and TE-THNH solutions agree with the Mie solution,
but they are less accurate than the TENE-THNH solutions
of Fig. 4. The average differences between the bistatic RCS
are given in Table 1. It is interesting to note in Figs. 5(b)
and 6(b) that the TENE-NH and NE-THNH solutions are
inaccurate when testing (10) or (11) with g, only.

4. Conclusion

The numerical scheme for solving the Miiller integral
equation is investigated to analyze scattering from 3-D
arbitrarily shaped dielectric objects with the triangular
patch model. To obtain a numerical solution, we employ
the MoM in conjunction with the RWG basis function. The
Miiller formulation gives accurate and valid solutions at an
internal resonant frequency of the scatterer, only when
testing both of the electric and magnetic fields with the
combination of the RWG function and its orthogonal
component at the same time. All the solutions obtained by
using TENE-TH and TE-THNH formulations dropping one
of the testing terms are less accurate. The NE-THNH and
TENE-NH formulations, testing one of the Miiller
equations with g, only, do not give valid solutions.

Finally, we propose two testing methods for the Miiller
equation that are not affected by the internal resonance
problem and yield a stable solution even at low frequency
by choosing either RWG +nx RWG or RWG —n x RWG for
testing the electric and magnetic fields simultaneously.
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