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ABSTRACT: When formulating a general, non-linear mathematical model of ship dynamics in waves the hydrostatic forces 

and moments along with the Froude-Krylov part of wave load are usually concerned. Normally radiation and the diffraction 

forces are regarded as linear ones. The paper discusses briefly few approaches, which can be used in this respect. The 

concerned models attempt to model the non-linearities of the surface waves; both regular and the irregular ones, and the non-

linearities of the restoring forces and moments. The approach selected in the Laidyn method, which is meant for the evaluation 

of large amplitude motions in the 6 degrees-of-freedom, is presented in a bigger detail. The workability of the method is 

illustrated with the simulation of ship motions in irregular stern quartering waves.  
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INTRODUCTION 

 

The method called Laidyn (Matusiak, 2000b, 2001) is 

meant for the evaluation of ship motions in waves. Ship is 

regarded as a rigid intact body. The mathematical model 

behind the method comprises the elements of maneuvering 

and makes allowance for the non-linear large amplitudes 

motions in waves. The original version, meant for the regular 

waves only, was based on the so-called two-stage approach. 

At the first stage of this approach, linear approximation to the 

rigid body motion in waves is evaluated. A number of non-

linearities involved in ship dynamics in waves are taken into 

account and the total response of ship in the six degrees-of-

freedom is solved at the second stage. In particular the non-

linearities of the rigid body dynamics, non-linear terms of the 

restoring and the Froude-Krylov forces, ship resistance, the 

forces developed by a propulsor and by a rudder are taken 

into account. Details of the method are given for instance in 

Matusiak (2007).  

Extension of the method, aimed at dealing with the long-

crested irregular waves, led to giving up the concept of the 

two-stage evaluation of the responses. Instead, a direct 

solution of ship response is evaluated in the time-domain. All 

other features of the method are preserved. Similarly as in the 

original method, the linear models represent the radiation 

forces and moments and also the diffraction part of the wave 

excitation acting on ship. It is worth noting that these forces 

and moments are oriented with the axes of the body-fixed co-

ordinate system.  

A linear surface wave theory of Airy is used to model 

surface waves. However, in order to take non-linearities of 

the Froude-Krylov loads into account, both the wetted 

surface of ship’s hull and pressures are evaluated up to the 

actual position of free surface. This is done using a 

kinematical model involving a simple summation of the 

undisturbed component waves and knowing the position of a 

hull in space. Extrapolation of pressures beyond the linear 

model of Airy can in principle be done in two different ways. 

These are presented and discussed further in the paper 

 
 

 

FORMULATION  
 

For the sake of this paper completeness, a short 

description of the Laidyn method is presented in the 

following. A more detailed description can be found in the 

abovementioned  
 

Equations of motion  

 

Equations of ship rigid motions are given by a set of six 

expressions (1) given below (Matusiak, 2007) with u, v and w 

being the projections of the velocities of ship’s centre of 

gravity in the Earth-fixed inertial co-ordinate system on the 

axes of the moving body-fixed system. The angular position 

of the ship is given by so-called modified Euler’s angles 

denoted as  and . Refer to Fig. 1 for the definitions of 

the inertia and body-fixed co-ordinate systems. In equations 1, 

Xg, Yg, Zg, Kg, Mg and Ng depict the components of global 

reaction force and moment vectors acting on the ship. These 

are given in the-body fixed co-ordinate system xyz. m and Iij 
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mean ship’s mass and the components of the mass moment of 

inertia. 
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Fig. 1 Co-ordinate systems used to describe ship motion 

(Matusiak, 2007) 

 
The relation between the velocities of the ship’s centre of 

gravity in the inertial co-ordinate system and their projections 

u, v and w on the axes of the moving body-fixed system is 

(Fossen, 1994; Clayton and Bishop, 1982)   
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Moreover a relation between the angular velocity vector 

=Pi+Qj+Rk and the Euler’s angles  and is needed 

(Fossen, 1994; Clayton and Bishop, 1982)  
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Numerical Solution 

 
Equations of motion 1 are solved numerically using the 

4th order Runge-Kutta integration scheme yielding velocities 

u, v, w, P, Q and R in the co-ordinate system fixed with the 

moving ship. Equations 2 and 3 are used to integrate theses 

velocities into the ship’s position in the inertial (Earth-fixed) 

co-ordinate system.  

At each time step the components of global reaction force 

and moment vectors acting on the ship Xg, Yg, Zg, Kg, Mg and 

Ng have to be given. These include restoring, radiation and 

wave forces, ship resistance, the forces developed by a 

propulsor and a rudder. These are described in bigger detail 

in Matusiak (2001, 2002). An allowance for wind loading is 

included as well. 

 
 

 

NON-LINEAR MODELS OF FROUDE-KRYLOV 

AND RESTORING FORCES AND MOMENTS 

 
General on the non-linear models 

 

There are a number of different approaches used in taking 

into account nonlinearities associated with restoring and 

Froude-Krylov forces and moments in waves. Some of these 

are direct extensions to the static buoyancy models. In this 

approach a simple or more sophisticated model of static lever 

(GZ-curve) in waves is considered (Hong et al., 2009; Vidic-

Perunovic, 2009; Bulian and Francescutto 2008). A 

parametric variation of restoring term results in a Mathieu-

type equation for roll motion, which in some cases gives a 

prediction of the so-called parametric roll resonance.  

A multivariable Taylor expansion up to the third order 

can be used to model describe strongly coupled restoring 

terms of heave, roll and pitch. Also this approach is 

successfully used in a prediction of parametric roll resonance 

(Rodríguez et al., 2007).  

Boundary element method, that is a panel method, either 

of a Rankine-type or utilizing a special Green function 

approach for unsteady free surface flows can be used in a 

linear or a non-linear form as well.  

RANSE methods, that is the tools solving both the 

unsteady free surface flow problem using Reynolds-

Averaged-Navier-Stokes equations and the body dynamics 

problem are already in use. As they are nearly free of any 

assumptions they may be regarded as the most sophisticated 

and reliable methods. However, their usage at present is 

mainly of a demonstrative nature only, as they require a lot of 

computer resources and take a lot of time to execute.  

A more profound and detailed description of the methods 

used in predicting large amplitude motions in waves can be 

found in the reports of the ITTC Committees on Seakeeping 

and Stability.  

In the next paragraph I will concentrate on a very 

restricted problem of modeling the non-linearities of 

hydrostatic and Froude-Krylov pressures in the panel-type 

seakeeping method. 



Inter J Nav Archit Oc Engng (2011) 3:111~115 113 

 

 

 

Non-linear hydrostatic and Froude-Krylov forces and 

moments in the context of a panel representation of ship 

hull 

 

When considering ship motions in waves, it is commonly 

believed that the most important contributors to the non-

linearities in the external forces acting on a ship hull are the 

restoring and Froude-Krylov forces and moments. Evaluation 

of these is done using a wetted surface of ship hull 

represented by a discrete panel model. This takes into 

account both an instantaneous position of ship in space and 

pressure due to waves extending up to the actual water 

surface. This is done as follows.  

Position of each control point c, that is a centre point of a 

panel, of Fig. 2 below is transformed from the body-fixed co-

ordinate system (xc,yc,zc) to the inertial Earth-fixed system 

(Xc,Yc,Zc) using transformation given by the following 

formula which is similar to the transformation 2. 

 

cos cos cos sin cos
cos cos

sin cos sin sin

sin sin sin sin sin cos
sin cos

cos cos cos sin

sin cos sin cos cos

c G

c G

c G

c

c

c

X X

Y Y

Z Z

x

y

z

    
 

   

     
 

   

    

   
   

   
   
   

 
 

 
   
   

    
    

   
 
  

(4) 

 

 
 

Fig. 2 Evaluation of hydrostatic and Froude-Krylov pressure. 

 

Wave elevation above the control point c is given by a 

sum over the wave components N 
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where Ai and ki=i
2
/g are wave amplitude and wave 

number corresponding to the i-th wave component. Phase 

angle i of each wave component is a random number. 

Details on generating wave trains from a given wave spectra 

are given for instance in Naito (1995) or Matusiak (2000a). 

There are three models for evaluating the pressure at 

point c. The first one is a linear Froude-Krylov pressure 

model with the wetted surface extending up to the still water 

level. It is worth noting that restoring forces and moments are 

taking non-linearity into account. In this model pressure is 

given by the expression 
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Two other models take into account the actual wetted 

surface. The pressures are evaluated for the immersed panels, 

that is for Zc+(t)>0.  

The first of these models, which is presented in Faltinsen 

(1990), is similar to the one given by Formula 6 but with a 

linear extrapolation of pressure between the still water and 

actual water levels. Thus it can be understood as an extension 

of the linear model. The third model, called stretched 

pressure model, is given by the formula with the free surface 

raised by the amount of wave elevation (5) in the argument of 

the exponent function.  
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The forces F and moments M are obtained by integrating 

the pressure (6 or 7) in the body fixed co-ordinate system. 

This integration is performed numerically by summing up the 

contribution from each wetted panel using 
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where the total number of the panels is denoted by M, Si is 

panel area, ni unit vector normal to panel and ri the position 

vector of the control point in the body-fixed co-ordinate 

system xyz. 

 

 

 

SHIP BEHAVIOR IN IRREGULAR WAVES USING 

THREE DIFFERENT MODELS OF FROUDE-

KRYLOV PRESSURE 
 

Ship motions in irregular waves were evaluated using the 

above-described three models of Froude-Krylov pressures. 

The investigated vessel is the one used in the benchmark 

study initiated by the International Towing Tank Conference 

and presented in (Spanos and Papanikolaou, 2009). This is a 

containership of waterline length of LPP = 150 m. Metacentric 

height was set to GM0=1.2 [m] yielding the natural roll period 

of T=21 [s]. A model of this ship was also investigated 

earlier in a similar study (ITTC, 2002).   
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In all three cases the same operational condition was set. 

The desired significant wave height was set to HS=5 [m] and 

period T1=7.3 [s]. In order to save the computing time, wave 

spectrum was represented by N=19 wave components only. 

Ship was set to the stern quartering long-crested waves at 

heading = 30 [deg]. In simulations ship is propelled with a 

propeller and steered with a rudder under a PD-control. Ship 

operated for 40 minutes in each numerical test. Summary of 

the results is presented in Table 1 below. 

Each of the irregular realization of waves was different 

due to a randomness built into the waves’ generation 

algorithm. Heave, roll and pitch motion components, as 

computed in time-domain, are presented in terms of their 

standard deviations, maxima and minima.  

 

Table 1 Summary of the results 

FK-linear Wave [m] Heave [m] Heave (linear) Roll [deg] Roll (linear) Pitch [m] Pitch (linear) 

stdev 1.15 0.20 0.19 3.99 1.09 0.58 0.64 

Max 2.98 0.46 0.46 11.65 3.40 1.44 1.36 

Min -3.62 -0.52 -0.46 -9.78 -3.10 -0.98 -1.43 

Faltinsen Wave [m] Heave [m] Heave (linear) Roll [deg] Roll (linear) Pitch [m] Pitch (linear) 

stdev 1.33 0.27 0.26 4.04 1.16 0.76 0.87 

Max 3.21 0.56 0.55 12.34 3.43 1.64 1.71 

Min -3.19 -0.69 -0.58 -11.20 -3.63 -1.47 -1.71 

Stretched Wave [m] Heave [m] Heave (linear) Roll [deg] Roll (linear) Pitch [m] Pitch (linear) 

stdev 1.14 0.19 0.18 2.63 1.09 0.49 0.56 

Max 3.16 0.46 0.44 6.94 3.47 1.35 1.43 

Min -3.60 -0.45 -0.43 -6.82 -2.94 -1.10 -1.37 

 
Linear approximation to the global responses of ship in 

irregular waves is evaluated in order to judge the effects of 

non-linearity on the derived responses. Normally, in the 

linear seakeeping theory, a constant forward speed is 

assumed. In the Laidyn method surge motion of ship is 

evaluated in the time domain taking into account amongst the 

others propeller action and variations of the wetted surface. 

Thus in-plane motion of ship is simulated in time-domain 

along with the other motion components. This results in ship 

position XG, YG in the Earth-fixed co-ordinate system.  This 

and the knowledge of transfer functions of the corresponding 

responses make it possible to evaluate linear approximation 

of the responses using the expressions 
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(9) 

 

where terms with subscripts L0 depict gain factors of the 

transfer functions and γ corresponding phase angles The 

transfer functions were obtained with the software based on 

linear seakeeping theory (Journee, 1992). 

There are no significant differences between the results 

obtained with different models for Froude-Krylov pressures, 

except for the roll motion. Time domain simulations with 

Laidyn give much higher roll angles than the linear frequency 

domain strip theory. The selected operational conditions that 

is a combination of wave period, heading and ship speed 

yield frequently a resonant roll motion, which is visible in the 

selected time histories of the responses presented in Figs. 3, 4 

and 5. Simulated case is critical for the ship in this particular 

case because of a kind of focusing effect of waves.  

The encounter period of majority of waves is very close 

to the natural period of roll. As a result a resonant roll motion 

develops frequently during the simulation period. 

The selected records represent maxima of roll motion in 

irregular waves for each model of Froude-Krylov pressure. 

Built-up of a roll develops for the wave groups having the 

encounter period close to the natural period of roll. The same 

cannot be seen with a fully linear frequency domain analysis. 

Linear solution relates roll angle to an instantaneous value of 

wave slope and thus it does not have relation to wave 

grouping. It is worth noting that roll damping was kept same 

valued in all models. 
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Fig. 3 Built-up of a resonant roll motion in irregular stern 

quartering waves simulated using a linear Froude-Krylov 

pressure model. 
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Faltinsen's pressure profile
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Fig. 4 Built-up of a resonant roll motion in irregular stern 

quartering waves simulated using the wave pressure model of 

Faltinsen. Stretched pressure profile
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Fig. 5 Built-up of a resonant roll motion in irregular stern 

quartering waves simulated using stretched wave pressure 

model. 

 

 

CONCLUSIONS 
 

It is impossible to draw a conclusion which of the models 

used in the presented time-domain simulations is best one. 

For the investigated case, all three yield much higher roll 

angles than the ones evaluated by the fully linear frequency 

domain model. A development of roll resonance for the 

investigated situation is known from the literature (Kluwe 

and  r ger        and acknowledged b  the  uthorities 

(IMO, 1995, 2006). A further research is needed to validate 

the method. In particular model tests in both regular and also 

in irregular quartering waves will provide better validation 

data for the method. 
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