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Abstract

Zemike moments have been one of the most commonly used feature vectors for recognizing rotated patterns due to its rotation invariant

characteristics. In order to reduce its expensive computational cost, several methods have been proposed to lower the complexity. One of
the methods proposed by Mukundan and K. R. Ramakrishnan [1], however, is not rotation invariant. In this paper, we propose another
method that not only reduces the computational cost but preserves the rotation invariant characteristics. In the experiment, we compare our

method with others, in terms of computing time and the accuracy of moment feature at different rotational angle of an object in image.

I. Introduction

Two types of features are often used for rotation invariant pattern
recognition systems: Fourier descriptor and moments[3, 6]. The
main advantage of the Fourier descriptor based method lies in its
speed. However, one of its drawback is that since the descriptor
describe an object with the outer boundary only, it becomes very
difficult for rotation invariant recognition when the object consists
of several boundaries, not to mention the sensitivity to the change
of boundary shape as well as the number of boundary curves even
preprocessed with morphology based filtering. Moment based
methods do not suffer from such drawbacks. In these methods, the
whole image is regarded as the sum of two-dimensional polyno-
mials, and the associated coefficients become feature vectors.

Many different types of moment polynomials have been proposed
since the introduction of Hu’s 7 moment invariants[5]. Among
these, Zernike moments are used for its two distinct properties:
the rotation invariant characteristics of the feature vectors and
their orthogonality[2, 3]. Recently the Zernike moment based
method has been successfully employed to discriminate and rec-
ognize a trademark from the database that consists of 3,000
trademarks[8]. One of the drawbacks of Zernike moments, however,
lies in expensive computational cost because of its repetitiveness.
In an effort to reduce the complexity of the computation of
Zernike moment basis functions, W.Y. Kim and Po Yuan[2] used
two look up tables for basis functions. On the other hand, R.
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Mukundan and K. R. Ramakrishnan{l} had converted a square
image to a circular one, and moments are computed in polar coordi-
nates to reduce the complexity in computation of polynomials. In
terms of the number of multiplications, they had OV complexity.
However, since original square image is shaped into a circle by
circular transform true sense of rotation invariance can not be
obtained.

In our method, we first transform an image in Cartesian
coordinates to polar coordinates because radial polynomials of
Zernike moment are defined only in terms of radius, so that the
pixels at the same radius have the same polynomial values. Then
three look up tables were used to avoid the repeated computa-
tions. Of course, the amount of memory was increased three
times more than in conventional method. However, the speed has
been increased by the order of magnitude.

The organization of this paper is as follows. In section 2, we
discuss Zemnike moment and precious researches on fast compu-
tation of Zernike moments(R. Mukundan and W.Y. Kim). In
section 3, we introduce Three Look Up Table (TLUT) method. In
section 4, we discuss the experimental results and conclusion in
section 5.

II. Computation of Zernike Moments

1. Zernike Moments

Zemike moments are a set of orthogonal polynomials, which have
the rotation invariant characteristics. The orthogonality implies no
redundancy or overlap of information between the moments. This
property enables the contribution of each moment to be unique
and independent of the information in an image. The rotation
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invariance allows the feature set, the magnitude of the Zemike mo-
ments extracted from the image, to be the same at any orientations.
Two-dimensional Zernike moments are defined as:

A = "TH ffxzﬂ,ﬁf(x, V) Vim(%, y)drdy (0

where, Viu(x,5) = Vou(o, ) = Ryn(0)e ™, lml<n,
n-|m|=even, and radial polynomials are defined as:

n—|ml

- % (_1)y (n—9)!
R.{0) = Eo( D S!("Em—Z)!Z ”_zm—s)!p %)

p : radius from origin to (x,y) pixel
8 : angle

In polar coordinates, Zernike moments are defined as:
1 pz .
A = ~”—”+—1 fo I R0, O™ odode &)

Now, let the image f(p,0+a) be the rotated image of Ap,6+a)
by « about its origin, then Zemike moments of f(p,6+a) are
given as

1 N
A = 2FL L fo . Run0)fC0, 6+ a)e™™***?0dode

Ay = A, exp(—ima) @)

In order words, the magnitudes of Zernike moments of an image
become rotation invariant because |[A),] = |A,,l

In a conventional method, the real and imaginary part of the
Zemnike moments, Cnm and S.,, respectively, are computed as
follows:

Com = ”Tﬂggf(x,y)fem(p)cos(me) ®

Sim = 2L I 15, ) Ron( ) cos (m)

where o and & are defined as:

o = \/( 2z ) )2+( 2= ) )2,

g = tan _’(u)
x—x

A = ComiSmm

Here, (x,y) is the center of the image.

When the moments are computed in Cartesian coordinates, Cum
and S,, have to be recomputed at each pixel location (xy) in
raster scan order. So, in order to compute K moments up to the
nth order for an NXN image, the total computational cost for
Rim(p) is K XN X0, where O is the operatibn for computing
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Fig. 1. Schematic of square-to-circle transformation.
(Quoted from Mukundan [1])

single Zerike moment polynomial, and K is determined by n as
follows:

K= 2[5 ©
For example, Eq.(6) yields K=90 when n=17 for a typical appli-
cation of recognizing a trademark from a database[8].

The basic idea for the fast computation of Zernike moment is
as follows: Ru( o) is the same for all pixels at the same radius
o from the origin. In a digital image of NXN, since the number
of p is limited to N/2, Run( 0) needs to be computed only KX
N/2 %O times in polar coordinates. So when Zernike moments are
computed by Eq.(3), the complexity of Zernike moment polyno-
mial reduces from O(N) to O®). In order to apply this concept
to a digital image, a transformation from Cartesian coordinates
into polar coordinates is necessary and will be discussed in the
subsequent sections.

2. Circular Transform (CT) Method

There are three types of distance functions in digital image; they
are Buclidean distance(D.), city-block distance (Ds) and chess-
board distance (Dg)[7]. Metrics defined by each distance function
from p to q with coordinates (x,y) and (s,f), respectively, are

1/2

D) DAp.g) = [(x—9)*+(y—0?]
2) Dipp = lx—o +ly—14
3) Dy(p.g) = max(lx—d, ly—1)

The pixels at the same distance will form a circle, diamond and

- square by these metrics, respectively.

In CT method proposed by Mukundan, the image pixels along
the concentric squares were mapped onto concentric circles by
transformation as shown Fig. 1.

The index y along the radial direction takes a values from 1
to (NJ2), whereas the index ¢ along the circumference takes a
value from 1 to 8 7. So Zemike moments polynomial Rn(2 7 /N)
needs be computed only once for all pixels mapped on to the
same circle.
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Fig. 2. Distance at rotated image in CT method.

The drawback of CT method
In CT method, the pixels from the origin to the pixels in Ds

distance are considered the same in D. distance after transfor-
mation. In other words, pixels along the square will map onto
those along the circle (solid line). With this concept,‘ however, a
circle (dotted line) in D, distance will no longer map onto a
circle after the transformation as illustrated in Fig. 2(b). Conse-
quently, Zernike moments for a circle will not be rotation
invariant unlike those for the square shape except when the
angles are multiples of 90 degrees.

3. Basis Look up Table (BLUT) Method.

In Eq. (1), will be the same for any image when the size of
image is the same. Therefore, two lookup tables of size NX N for
are prepared off-line, and an input image is normalized to the size,
Zemnike moments of the image are then computed as follows:

Com = 2}]2\: 2, VY VR (%, ¥) Y]

T
Sm= L ST A2, WVLz,9)
Anm = C Snm

where VR, and VI, are real and imaginary look up tables of
Vim(x,y), Tespectively.

With this method, since there is no need for computation of
basis functions on-line, the method requires only one multiplica-
tion and one addition per pixel, and the complexity is reduced to
O(KN2 ), where K and N are the number of moments and the size
of image, respectively.

M. Three Look Up Table (TLUT) Method

In our method three look up tables for radius, angle, and S,
are prepared for computing Zernike moments in polar coordinates.
To do so, x and y values are first mapped to p and &. Then,
the radius p, whose range is from O to 1, is normalized to Ry,
and stored in a look up table Ti(x,y) for radius by the following

formula:

TAx,3) =r=[0XRupa], Ruax = [N/2] ®)

where [x] = [x+0.5], which is the nearest integer.

Another table 7, for angle is prepared for the whole NXN
image again as follows:

T %,y = tan ’l(u) )

X— X

The mapping of o to T.(x,y) has an advantage of computing
Zernike moments fast to reduce the 'complexity for Rym. In other
words, the computation of R, can be reduced from O(N) to
ON) as follows: suppose we connect the pixels that have the
same 7y in the radius table, Ruat1 concentric circles are drawn
ranging from O to R Because the number of different values
for 7 is Rmutl, the computation of Ry, reduces to Rma+] from
N for NXN image when 7 is used for o. Then Eq. (5) can be
rewritten in terms of 7T;, T, as follows:

Com - ”TH ZIIZ.f(x,y)R;m( 7) cos (mb) (10

Sum = L X 2, )Ry 5in ()

where v=T(x, y), 8=T.(x, y) and R,.(» = R,,,,,(T—R',::Ty)—)

Now, in Eq. (9), although the total number of R, is reduced to
Nj2, the total number of multiplication remains to 2 X KX N° X2
which is the same as the conventional and that of CT method.
This number of multiplication can also be reduced by eliminating
the redundancy in the definition of Zernike moments in polar
coordinates. In TLUT method, Zemike moments Au, in polar
coordinates can be expressed as:

1 3
A= 2EL ['R(0) [* Ko, 00e ™ pdodo an

In Eq. (10), since the 2nd integral term consists of m and p,
which is the same for any values of n, it is casted into S.(e).
Then the Zernike moment A., is computed by:

1
Am= [ Run(0)Sul0)do (12)
Now the equation is expressed by o only which is already

quantized and mapped to y. By using 7 for o in Eq.(11), the
real and imaginary parts of A, are computed by:

R A7) - SC,, () (13

MM” 'ﬁM"’

R (r) SS,.(7)

where SCi(r) and SSw(r) are cosine and sine terms of
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So(7) = Sm(ﬁ), respectively.

In the actual implementation, SC and SS, for each m are
computed as follows: since SCn(r) and SSn(r) are the functions of
distance only, they can be computed by accumulating the result of
multiplication between f and sinusoidal term. Furthermore, they
are computed in Cartesian coordinates using radius and angle
tables which were already prepared. Because the tables have the
distance and angle values for each pixel at (x,y), the result can be
easily accumulated to SC, and SS, terms by indexing the radius
table. A pseudo-code for computation of SC, and SS. are as
follows;

For i = 0 t0 Ruax

SCu(i): = 0
SSm(i): = 0
end

For x : =0to N
Fory:=0to N
SCu(Ti(xy)) : =
SCu(Ti(x,y)) + fixy) X cos(m X Ta(x,y))
SS(Te(xy)) : =
SSm(TAx,y)) + fix,y) X sin(m X Ta(x,))
end
end

To compare our TLUT method with others in terms of the
complexity, the computational costs for multiplication and R are
listed in table 1, where Cy, and S, are computed up to nth order
and the number of moments K is determined by Eq. (6). The
actual number of computations is shown in table 2 when the
maximum order of the moment is limited to 8, i.e., 25 moments,
for 100X 100 image.

Table 1. Complexity of each method.

Table 3. Zernike moments for each order.

Order (n) Moments (Anm) No. of moments
0 A 1
1 A 1
2 Ax Az 2
3 Az, Ass 2
4 Asw An, A 3
5 Asp, Ass, Ass 3
6 Ao, Asz Ass, Ass 4
7 A7, An, Az, Ar 4
8 Aso, Asz Ass, Ass, Ass 5

Table 4. Comparative performance analysis of Zernike moments

for various image size. (sec)

Method Multiplication R
TLUT AXN?X (n+1)+2 X K X NJ2 KXNJ2
CT 4XN*XK KXNJ2
BLUT 4xXN?XK None
Direct 4XN*XK KXN
TLUT : Proposed Three Lock Up table method
CT . Circular Transform method
BLUT : Basis Look Up Table method
Direct : Direct computation by eq.(5)
Table 2. Actual number of computation.
Method Multiplication Run
TLUT 3.6x10° 1250
CT 1.0x10° 1250
BLUT 1.0%10° 0
Direct 1.0x10° 25x10°

Method 101 by 101 155 by 155 201 by 201
TLUT 0.0978 0.1793 0.2937
CT 0.2830 0.5932 1.0738
BLUT 0.2748 0.5342 0.9334
Conventional 5.184 12.31 20.78

IV. Experiment and Result

In order to evaluate the performance of our method compared
to CT, BLUT and the conventional direct method, the elapsed
time in computer simulation and SNR between original and
rotated image were measured. Twenty-five moments up to 8th
order were computed on IBM PC (Pentium 100MHz CPU) as
shown in table 3. Table 4 shows the elapsed time of three
methods for various size of image. To verify the rotation invariant
characteristics of our proposed method, Zernike moments of a
trademark image are computed at different orientations. Fig. 3
shows moments at 0, 30, 60, 90 and 120 degrees, respectively.
SNRs between 0, 15, 30, 45, 60, 75 and 90 degrees are depicted
in Fig. 4. For more evaluation at different sizes of image, SNRs
between 0 and 30 degrees are depicted in Fig. 5. Here, |An.| are
Zemike moments of original image, |A},| are the moments of rotated

image and |A[ is the mean of the moments. SNR is defined as:

SNR— 101og§ (14)
where, o = E (|4l —| Auml)’], = E (Al —145)7]

In terms of computation speed, CT, BLUT and TLUT methods
yielded much better results than the conventional method as
shown in Table 4. Among these, the elapsed time for TLUT
method was three times faster than CT and BLUT methods. For
the extracted feature vectors, however, the conventional method
and TLUT method have the closest rotation invariant charac-
teristics, while CT method fails to do so as depicted in Fig. 3,
Fig. 4 and Fig. 5.
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Fig. 3. Zemike moments of the image in (a) at different orientation, by: (b) CT, (c) TLUT, (d) direct and (¢) BLUT method.
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V. Conclusion

Zernike moment feature is one of the powerful features that
can be used to recognize one out of 3,000 trademarks at any
scale and orientations. The computational complexity of Zernike
moments, however, has prevented its application to real world
problems. In this paper, we have proposed a method to compute
Zernike moments fast using three lookup tables. In particular, we
have shown that the computational redundancy of radial polyno-
mials can be eliminated when computed in polar coordinates.
Although several methods have been proposed to utilize the
similar concepts, we used three look up tables instead of one to
avoid the repeated computations. At the price of memory increase
compared to existing methods, however, the speed was increased
by the order of magnitude, resulting in its application possible for
Zernike moments under real-time constraints. We have compared
their performance in terms of speed and accuracy at arbitrary
angles. The results indicate that our method is far superior to any
other methods in terms of speed and accuracy.
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