Several non-methylotrophic bacteria have been reported to improve the growth and activity of methanotrophs; however, their interactions remain to be elucidated. We investigated the interaction between Methylocystis sp. M6 and Microbacterium sp. NM2. A batch co-culture experiment showed that NM2 markedly increased the biomass and methane removal of M6. qPCR analysis revealed that NM2 enhanced both the growth and methane-monooxygenase gene expression of M6. A fed-batch experiment showed that co-culture was more efficient in removing methane than M6 alone (28.4 vs. $18.8{\mu}mol{\cdot}l^{-1}{\cdot}d^{-1}$), although the biomass levels were similar. A starvation experiment for 21 days showed that M6 population remained stable while NM2 population decreased by 66% in co-culture, but the results were opposite in pure cultures, indicating that M6 may cross-feed growth substrates from NM2. These results indicate that M6 apparently had no negative effect on NM2 when M6 actively proliferated with methane. Interestingly, a batch experiment involving a dialysis membrane indicates that physical proximity between NM2 and M6 is required for such biomass and methane removal enhancement. Collectively, the observed interaction is beneficial to the methanotroph but adversely affects the non-methylotroph; moreover, it requires physical proximity, suggesting a tight association between methanotrophs and non-methylotrophs in natural environments.
본 연구에서는 메탄의 생물학적 메탄올 전환에 관한 연구를 수행하였다. 바이오가스 중의 메탄은 메탄산화균의 methane monooxygenase (MMO)의 생물학적 촉매반응에 의해 산화되었으며, 인산염, NaCl, $NH_4Cl$, EDTA와 같은 methanol dehydrogenase (MDH)의 활성 저해제를 이용하여 MDH의 활성도를 저해함으로써 메탄올의 전환이 이루어졌다. 메탄산화균은 $35^{\circ}C$, pH 7, 인공 바이오가스($CH_4$ 50%, $CO_2$ 50%) / Air의 부피비가 0.4인 조건에서 메탄 산화 정도가 0.56 mmol로 최대로 나타났다. 인산염 40 mM, NaCl 50 mM, $NH_4Cl$ 40 mM, EDTA $150{\mu}m$ 이하일 때 저해제의 종류에 상관없이 메탄 산화율은 80% 이상을 달성하였다. 한편, 인산염 40 mM, NaCl 100 mM, $NH_4Cl$ 40 mM, EDTA $50{\mu}m$ 주입 시 각각 1.30, 0.67, 0.74, 1.30 mmol의 메탄이 산화되는 동시에 각각 0.71, 0.60, 0.66, 0.66 mmol의 메탄올이 최대로 생성되었다. 이때의 메탄올 전환율은 각각 54.7, 89.9, 89.6 및 47.8%였으며 최대 메탄올 생성 속도는 $7.4{\mu}mol/mg{\cdot}h$였다. 이로부터 대상 저해제로 MDH 활성도를 일반적으로 35% 저해 시에 메탄올 생산량이 최대인 89.9%까지 나타남을 알 수 있었다.
This study analyzed the utility of ammonium chloride ($NH_4Cl$) as a nitrogen source for methanotroph communities. When cultured in nitrate mineral salt (NMS) medium, the methanotroph community we identified four families, seven genera, and 16 type I and type II species of methanotrophs. Among species in the Methylobacter genus, Methylobacter marinus could be actively cultured in NMS medium without NaCl addition. Following the addition of 25 mM $NH_4Cl$, the numbers of the type I genera Methylomonas, Methylococcus, and Methylobacter were increased, whereas the numbers of the type II genera Methylocystis and Methylosinus were decreased after 5 days. In methanotroph communities, certain concentrations of $NH_4Cl$ affected methane consumption and growth of methanotrophs at the community level. $NH_4Cl$ caused a considerable decrease in the methane consumption rate and the expression of soluble methane monooxygenases (sMMOs) but did not inhibit the growth of Methylomonas methanica expressing sMMO. These results could be attributed to competitive antagonism of MMOs due to their direct involvement in ammonia oxidation.
A methane-oxidizing bacterium was isolated from rice paddy field soil around Jeollanam-do province, Korea, and characterized. The isolate was gram-negative, orange pigmented and short rod ($1.1-1.2{\times}1.6-1.9{\mu}m$). It was catalase and urease-negative but oxidase-positive. The strain utilized methane and methanol as sole carbon and energy sources. It had an ability to grow with an optimum pH 7.0 and an optimum growth temperature $30^{\circ}C$. The strain was resistant to antibiotic polymyxin B but sensitive to streptomycin, kanamycin, ampicillin, chloramphenicol and rifampicin. The isolate required copper for their growth with concentration range of $2-25{\mu}M$, with an optimum of $10{\mu}M$. Under optimal culture condition, specific cell growth rate and generation time were found to be $0.046hr^{-1}$ and 15.13 hr, respectively. Phylogenetic analysis based on 16S rDNA sequences indicated that the strain formed a tight phylogenetic lineage with Methylomonas koyamae with a value of 99.4% gene sequence homology. So, we named the isolate as Methylomonas sp. SM4. 8.6 mM methanol was accumulated in the reaction mixture containing 70 mM sodium formate and 40 mM $MgCl_2$ (MDH inhibitor) under atmosphere of methane:air (40:60) mixture for 24 hr at $30^{\circ}C$.
본 연구에서는 에탄 자화균인 Methylosinus trichosporim OB3b를 이용하여 메탄으로부터 에탄올 생성에 관한 실험을 수행하였다. 에탄으로부터 에탄올을 생성하기 위해서는 메탄 산화과정 중 두번 째 효소인 methanol dehydrogenase 효소의 활성을 부분 저해해야 하므로 이를 위해 EDTA를 사용한 결과 EDTA가 methanol dehydrogenase의 저해제 임을 확인하였고 배지에 6mM EDTA를 첨가하였을 때 전혀 첨가하지 않았을 때와 비교하여 메탄올 생 성이 약 5배 정도 증가되어 lOmmole/L의 에탄율을 얻을 수 있었다. 또한 Cu의 존재유무가 에단올 생성 에 미치는 영향을 실험한 결과 ImM Cu 존재시 $5\mu\textrm{M}$ Cu 존재하에 비해 메탄올 생성이 약 2.5배 증가되어 약 11mmole/L의 메탄올을 얻을 수 있었는데 이는 Cu 존재가 입자상(particulate) MMO의 생성을 촉 진시키며 생성된 이 세포 단위중량당 MMO 활성이 높은 pMMO가 에탄으로부터 에탄올의 생성을 촉진 시키는 것으로 생각된다. 그리고 온도가 에탄올 생 성에 미치는 영향을 실험한 결과 온도가 3TC에서 $30^{\circ}C , 25^{\circ}C$ 로 낮아점에 따라 생성 메단올 농도가 증 가하여 15.5mmole/L에 이르렀고 메탄 소비속도도 증가됨을 알 수 있였다. 또한 메단과 산소의 구생성 분비가 에탄올 생성에 미치는 영향을 실험한 결과 산소대비 에탄 농도가 증가할수록 생성 에탄올의 농 도 및 세포농도가 증가됨을 알 수 였다. 그리하여 50% 메탄, 50% 산소 존재하에 비해 70% 에탄, 30% 산소 경우에는 약 50% 증가된 15.3 mmole/L 농도의 머l단올을 얻을 수가 있였으며 세포농도도 많이 증가됨을 알 수 있다.
침수된 논토양에서는 메탄생성균이 벼 줄기를 타고 올라오는 메탄을 생성하는 것으로 알려져 있고, 그래서 논토양은 대기 메탄의 인위적인 발생원 중 하나로 알려져 있다. 또한 (분뇨)거름을 사용하면 벼로부터 메탄 배출이 증가하는 것으로 연구 결과 알려져 있다. 어떠한 기작으로 (분뇨)거름이 메탄 배출을 증가시키는지 알아보기 위하여, 무기비료를 사용한 논토양(NPK)과 돈분뇨를 처리한 논토양(PIG)에서의 미생물의 메타게놈에 대해 비교분석을 수행하였다. 미생물군집 분류 분석 결과, 메탄생성균과 메탄영양균, 메틸영양균, 초산생성균(acetogen)이 NPK에서 보다 PIG에서 더 풍부하였다. 더욱이 BLAST 비교 분석 결과 탄수화물 대사 기능유전자가 PIG에 더 풍부하였다. 메탄 대사와 관련된 유전자 중에서 메틸-조효소-M-환원효소(mcrB/mcrD/mcrG)와 트리메틸아민-코리노이드 단백질 Co-메틸전달효소(mttB)가 PIG 시료에 더 풍부하였다. 그와는 상대적으로, 트리메틸아민 모노산소첨가효소(tmm)와 포스포세린/호모세린 인산전달효소(thrH) 같은 메탄 배출을 하향 조절하는 유전자는 NPK 시료에서 더 관찰되었다. 메탄영양과 관련된 유전자(pmoB/amoB/mxaJ)들 또한 PIG에서 더 풍부하게 발견되었다. 메탄 배출과 메탄 산화와 관련된 핵심 유전자들을 환경에서 확인함으로써, (분뇨)거름 사용에 의해 벼로부터 메탄 배출이 증가하는 기작에 대해 기초적인 정보를 얻을 수 있을 것이다. 본 연구에 제시된 내용을 통해 돈분료거름을 처리한 논토양 내 미생물의 분자적 변이를 알 수 있었다.
The transformation capacity (T$\_$c/) of Methylosinus trichosporium OB3b in the degradation of ethylene chlorides was determined by measuring the decrease of soluble methane monooxygenase (sMMO) activity of resting cells in batch experiments. All measurements of sMMO activity were taken in the presence of 20 mM formate to avoid the deficiency of reducing power, and within 2 hrs to avoid the effect of natural inactivation from instability of the resting cells. The constant T$\_$c/ values of 0.58 ${\pm}$ 0.132 and 0.80 ${\pm}$ 0.17 ${\mu}$mol/mg cell were obtained for trichloroethylene (TCE) and 1,2-dichloroethylene (cis and trans-1,2-DCE), respectively, regardless of their concentrations. The transformation capacity measured by this method can be used to predict the amount of cells that should be stimulated in in-situ bioremediation.
본 연구에서는 sMMO를 갖는 메탄 자화균인 M. triclwsporium OB3b를 이용하여 메탄올 생산을 위한 기초실험을 수행하였다. 중요한 결과를 요약하면 다음과 같다(Table 2). 1. 세포 내 NADH의 재생을 위해 개미산을 첨가 할 때 whole-cell의 sMMO 활성은 pH 7.0 및 $30^{\circ}C$ 에서 최대값을 보이며 propylene을 기질로 할 경우 약 130nmol/mg cell min 정도이다. 2. 인산은 MMO와 MDH 활성을 모두 저해하나 M MDH에 대한 저해 정도가 훨씬 크므로 메탄올 합성 에 사용이 가능하다. Noncompetitive mode를 가정 할 때 저해상수는 각각 185mM(MMO) 및 42mM ( (MDH)이었다. 3. 메탄올은 MMO 활성을 저해하며 noncompetit tive mode를 가정할 때 propylene기질의 경우 2 21mM 이었다. 4. 균체 내 sMMO 활성은 성장이 멈춰진 상태에 셔 비교적 때}른 속도로 감소하며 고농도 인산용액에 서 그 속도가 더 빨라진다. 5. 인산농도 91mM에서 메탄은 메탄올로 산화되 어 축적되며 4.5시간 동안 에탄올의 생성속도는 평 균 79nmol/mg min이었다.
본 연구는 메탄산화균을 분리 배양하여 생물학적 질소 및 인 제거에 응용하는데 있다. 수도권 매립지의 상부 토양으로부터 NMS (nitrate mineral salt solution)배지로 분리 배양된 메탄산화균을 이용하여 영양염 제거 및 성장특성을 분석하였다. 분리 배양된 메탄산화균은 탈질의 탄소원으로서 이용될 수 있는 메탄올, 포름알데히드, 포름산으로 구성된 상당한 양의 유기물(COD 증가)을 생산하였다. 이때 메탄올의 생성속도는 $8\;mg/L{\cdot}hr$로 나타났다. 메탄산화균의 슬러지에 함유되어 있는 질소와 인의 함량을 볼 때 메탄산화균은 탈질에 필요한 탄소원 생성 뿐만 아니라 자체적으로 질소와 인을 성장기질로서 사용하는 것으로 나타났다.
Kim Young;Istok Jonathan D.;Semprini Lewis;Oa Sung-Wook
한국지하수토양환경학회:학술대회논문집
/
한국지하수토양환경학회 2006년도 총회 및 춘계학술발표회
/
pp.54-56
/
2006
Single-well-gas-sparging tests were developed and evaluated for assessing the feasibility of in-situ aerobic cometabolism of trichloroethylene (TCE), using propane as a growth substrate. To evaluate transport characteristics of dissolved solutes [sulfur hexafluoride (SF6) or bromide (non-reactive tracers), propane (a growth substrate), ethylene, propylene (nontoxic surrogates to probe for CAH transformation activity), and DO], push-pull transport tests were performed. Mass balance showed about 90% of the injected bromide and about 80% of the injected SF6 were recovered, and the recoveries of other solutes were comparable with bromide and slightly higher than SF6. A series of Gas-Sparging Biostimulation tests were performed by sparging propane/oxygen/argon/SF6 gas mixtures, and temporal ground water samples were obtained from the injection well under natural gradient 'drift' conditions. The decreased time for propane depletion and the longer time to deplete SF6 as a conservative tracer indicate the progress of biostimulation. Gas-Sparging Activity tests were performed. .Propane utilization, DO consumption, and ethylene and propylene cometabolism were well demonstrated. The stimulated propane-utilizers cometabolized ethylene and propylene to produce ethylene oxide and propylene oxide, as cometabolic by-products, respectively. Gas-Sparging Acetylene Blocking tests were performed by sparging gas mixtures including acetylene to demonstrate the involvement of monooxygenase enzymes. Gas substrate degradation was essentially completely Inhibited in the presence of acetylene, and no production of the corresponding oxides was also observed. The Gas-Sparging tests supports the evidences that the successive stimulation of propane-oxidizing microorganisms, cometabolic transformation of ethylene and propylene by the enzyme responsible for methane and propane degradation.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.