Browse > Article
http://dx.doi.org/10.4014/jmb.1804.04015

Adverse Effect of the Methanotroph Methylocystis sp. M6 on the Non-Methylotroph Microbacterium sp. NM2  

Jeong, So-Yeon (Department of Microbiology, Pusan National University)
Cho, Kyung-Suk (Department of Environmental Science and Engineering, Ewha Womans University)
Kim, Tae Gwan (Department of Microbiology, Pusan National University)
Publication Information
Journal of Microbiology and Biotechnology / v.28, no.10, 2018 , pp. 1706-1715 More about this Journal
Abstract
Several non-methylotrophic bacteria have been reported to improve the growth and activity of methanotrophs; however, their interactions remain to be elucidated. We investigated the interaction between Methylocystis sp. M6 and Microbacterium sp. NM2. A batch co-culture experiment showed that NM2 markedly increased the biomass and methane removal of M6. qPCR analysis revealed that NM2 enhanced both the growth and methane-monooxygenase gene expression of M6. A fed-batch experiment showed that co-culture was more efficient in removing methane than M6 alone (28.4 vs. $18.8{\mu}mol{\cdot}l^{-1}{\cdot}d^{-1}$), although the biomass levels were similar. A starvation experiment for 21 days showed that M6 population remained stable while NM2 population decreased by 66% in co-culture, but the results were opposite in pure cultures, indicating that M6 may cross-feed growth substrates from NM2. These results indicate that M6 apparently had no negative effect on NM2 when M6 actively proliferated with methane. Interestingly, a batch experiment involving a dialysis membrane indicates that physical proximity between NM2 and M6 is required for such biomass and methane removal enhancement. Collectively, the observed interaction is beneficial to the methanotroph but adversely affects the non-methylotroph; moreover, it requires physical proximity, suggesting a tight association between methanotrophs and non-methylotrophs in natural environments.
Keywords
Methylocystis; Microbacterium; microbial interaction; physical proximity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Fox BG, Borneman JG, Wackett LP, Lipscomb JD. 1990. Haloalkene oxidation by the soluble methane monooxygenase from Methylosinus trichosporium OB3b: mechanistic and environmental implications. Biochemistry 29: 6419-6427.   DOI
2 Burrows KJ, Cornish A, Scott D, Higgins IJ. 1984. Substrate specificities of the soluble and particulate methane mono-oxygenases of Methylosinus trichosporium OB3b. Microbiology 130: 3327-3333.   DOI
3 Colby J, Stirling DI, Dalton H. 1977. The soluble methane mono-oxygenase of Methylococcus capsulatus (Bath). Its ability to oxygenate n-alkanes, n-alkenes, ethers, and alicyclic, aromatic and heterocyclic compounds. Biochem. J. 165: 395-402.   DOI
4 Jiang H, Chen Y, Jiang P, Zhang C, Smith TJ, Murrell JC, et al. 2010. Methanotrophs: Multifunctional bacteria with promising applications in environmental bioengineering. Biochem. Eng. J. 49: 277-288.   DOI
5 Huber-Humer M, Gebert J, Hilger H. 2008. Biotic systems to mitigate landfill methane emissions. Waste Manag. Res. 26: 33-46.   DOI
6 Dedysh SN, Knief C, Dunfield PF. 2005. Methylocella species are facultatively methanotrophic. J. Bacteriol. 187: 4665-4670.   DOI
7 Knief C. 2015. Diversity and habitat preferences of cultivated and uncultivated aerobic methanotrophic bacteria evaluated based on pmoA as molecular marker. Front Microbiol. 6: 1346.
8 Petersen JM, Dubilier N. 2009. Methanotrophic symbioses in marine invertebrates. Environ. Microbiol. Rep. 1: 319-335.   DOI
9 Murase J, Frenzel P. 2008. Selective grazing of methanotrophs by protozoa in a rice field soil. FEMS Microbiol. Ecol. 65: 408-414.   DOI
10 Kip N, Van Winden JF, Pan Y, Bodrossy L, Reichart G-J, Smolders AJ, et al. 2010. Global prevalence of methane oxidation by symbiotic bacteria in peat-moss ecosystems. Nat. Geosci. 3: 617-621.   DOI
11 Raghoebarsing AA, Smolders AJP, Schmid MC, Rijpstra WIC, Wolters-Arts M, Derksen J, et al. 2005. Methanotrophic symbionts provide carbon for photosynthesis in peat bogs. Nature 436: 1153-1156.   DOI
12 Van der Ha D, Bundervoet B, Verstraete W, Boon N. 2011. A sustainable, carbon neutral methane oxidation by a partnership of methane oxidizing communities and microalgae. Water Res. 45: 2845-2854.   DOI
13 Gonzalez JM, Sherr EB, Sherr BF. 1990. Size-selective grazing on bacteria by natural assemblages of estuarine flagellates and ciliates. Appl. Environ. Microbiol. 56: 583-589.
14 Atlas RM, Bartha R. 1997. Microbial ecology: fundamentals and applications, pp. 4 Ed. Benjamin/Cummings Science Publishing, Melon Park.
15 Iguchi H, Yurimoto H, Sakai Y. 2011. Stimulation of methanotrophic growth in cocultures by cobalamin excreted by rhizobia. Appl. Environ. Microbiol. 77: 8509-8515.   DOI
16 Stock M, Hoefman S, Kerckhof F-M, Boon N, De Vos P, De Baets B, et al. 2013. Exploration and prediction of interactions between methanotrophs and heterotrophs. Res. Microbiol. 164: 1045-1054.   DOI
17 Hrsak D, Begonja A. 1998. Growth characteristics and metabolic activities of the methanotrophic-heterotrophic groundwater community. J. Appl. Microbiol. 85: 448-456.   DOI
18 Wilkinson TG, Topiwala H, Hamer G. 1974. Interactions in a mixed bacterial population growing on methane in continuous culture. Biotechnol. Bioeng. 16: 41-59.   DOI
19 Whittenbury R, Phillips KC, Wilkinson JF. 1970. Enrichment, isolation and some properties of methane-utilizing bacteria. J. Gen. Microbiol. 61: 205-218.   DOI
20 Jeong S-Y, Cho K-S, Kim TG. 2014. Density-dependent enhancement of methane oxidation activity and growth of methylocystis sp. by a non-methanotrophic bacterium Sphingopyxis sp. Biotechnol. Rep. 4: 128-133.   DOI
21 Lee E-H, Yi T, Moon K-E, Park H, Ryu HW, Cho K-S. 2011. Characterization of methane oxidation by a methanotroph isolated from a landfill cover soil, south Korea. J. Microbiol. Biotechnol. 21: 753-756.   DOI
22 Lee E-H, Park H, Cho K-S. 2010. Characterization of methane, benzene and toluene-oxidizing consortia enriched from landfill and riparian wetland soils. J. Hazard. Mater. 184: 313-320.   DOI
23 Chen Z, Potempa J, Polanowski A, Wikstrom M, Travis J. 1992. Purification and characterization of a 50-kDa cysteine proteinase (gingipain) from Porphyromonas gingivalis. J. Biol. Chem. 267: 18896-18901.
24 Kim TG, Yi T, Lee E-H, Ryu HW, Cho K-S. 2012. Characterization of a methane-oxidizing biofilm using microarray, and confocal microscopy with image and geostatic analyses. Appl. Microbiol. Biotech. 95: 1051-1059.   DOI
25 Kim TG, Jeong S-Y, Cho K-S. 2015. Development of droplet digital PCR assays for methanogenic taxa and examination of methanogen communities in full-scale anaerobic digesters. Appl. Microbiol. Biotech. 99: 445-458.   DOI
26 Kim TG, Jeong S-Y, Cho K-S. 2014. Comparison of droplet digital PCR and quantitative real-time PCR for examining population dynamics of bacteria in soil. Appl. Microbiol. Biotech. 98: 6105-6113.   DOI
27 Xing X-H, Wu H, Luo M-F, Wang B-P. 2006. Effects of organic chemicals on growth of Methylosinus trichosporium OB3b. Biochem. Eng. J. 31: 113-117.   DOI
28 Manickam N, Mau M, Schlomann M. 2006. Characterization of the novel HCH-degrading strain, Microbacterium sp. ITRC1. Appl. Microbiol. Biotech. 69: 580-588.   DOI
29 Sheng X, He L, Zhou L, Shen Y. 2009. Characterization of Microbacterium sp. F10a and its role in polycyclic aromatic hydrocarbon removal in low-temperature soil. Can. J. Microbiol. 55: 529-535.   DOI
30 Chen J-A, Li X, Li J, Cao J, Qiu Z, Zhao Q, et al. 2007. Degradation of environmental endocrine disruptor di-2-ethylhexyl phthalate by a newly discovered bacterium, Microbacterium sp. strain CQ0110Y. Appl. Microbiol. Biotech. 74: 676-682.   DOI
31 Samuels GJ. 1996. Trichoderma: a review of biology and systematics of the genus. Mycological Research. 8: 923-935.
32 Ho A, De Roy K, Thas O, De Neve J, Hoefman S, Vandamme P, et al. 2014. The more, the merrier: heterotroph richness stimulates methanotrophic activity. ISME J. 8: 1945-1948.   DOI
33 Dianou D, Adachi K. 1999. Characterization of methanotrophic bacteria isolated from a subtropical paddy field. FEMS Microbiol. Lett. 173: 163-173.   DOI
34 Schroeckh V, Scherlach K, Nützmann H-W, Shelest E, Schmidt-Heck W, Schuemann J, et al. 2009. Intimate bacterial-fungal interaction triggers biosynthesis of archetypal polyketides in Aspergillus nidulans. Proc. Natl. Acad. Sci. USA 106: 14558-14563.   DOI
35 Veraart A, Garbeva P, Beersum F, Ho A, Hordijk C, Meima-Franke M, et al. 2018. Living apart together-bacterial volatiles influence methanotrophic growth and activity. ISME J. 12: 1163-1166.   DOI
36 Kankaala P, Huotari J, Peltomaa E, Saloranta T, Ojala A. 2006. Methanotrophic activity in relation to methane efflux and total heterotrophic bacterial production in a stratified, humic, boreal lake. Limnol. Oceanogr. 51: 1195-1204.   DOI
37 Stolp H. 1973. The bdellovibrios: Bacterial parasites of bacteria. Annu. Rev. Phytopathol. 11: 53-76.   DOI
38 Semrau JD, DiSpirito AA, Yoon S. 2010. Methanotrophs and copper. FEMS Microbiol. Rev. 34: 496-531.   DOI
39 Kim TG, Yi T, Yun J, Ryu HW, Cho K-S. 2013. Biodegradation capacity utilization as a new index for evaluating biodegradation rate of methane. J. Microbiol. Biotechnol. 23: 715-718.   DOI
40 Hanson RS, Hanson TE. 1996. Methanotrophic bacteria. Microbiol. Rev. 60: 439-471.