DOI QR코드

DOI QR Code

Metagenomics analysis of methane metabolisms in manure fertilized paddy soil

메타게놈 분석을 이용한 돈분뇨 처리에 의한 논토양에서 메탄대사에 미치는 영향 조사

  • Nguyen, Son G. (Faculty of Biotechnology, College of Applied Life Sciences, SARI, Jeju National University) ;
  • Ho, Cuong Tu (Institute of Environmental Technology, Vietnam Academy of Science and Technology (VAST)) ;
  • Lee, Ji-Hoon (Department of Bioenvironmental Chemistry, Chonbuk National University) ;
  • Unno, Tatsuya (Faculty of Biotechnology, College of Applied Life Sciences, SARI, Jeju National University)
  • 응우옌 기앙 손 (제주대학교 생명자원대학 생명공학부) ;
  • 호 투 궝 (베트남과학기술원 환경기술학과) ;
  • 이지훈 (전북대학교농업생명과학대학 생물환경화학과) ;
  • 운노타쯔야 (제주대학교 생명자원대학 생명공학부)
  • Received : 2016.02.22
  • Accepted : 2016.04.13
  • Published : 2016.06.30

Abstract

Under flooded rice fields, methanogens produce methane which comes out through rice stalks, thus rice fields are known as one of the anthropogenic sources of atmospheric methane. Studies have shown that use of manure increases amount of methane emission from rice. To investigate mechanisms by which manure boosts methane emission, comparative soil metagenomics between inorganically (NPK) and pig manure fertilized paddy soils (PIG) were conducted. Results from taxonomy analysis showed that more abundant methanogens, methanotrophs, methylotrophs, and acetogens were found in PIG than in NPK. In addition, BLAST results indicated more abundant carbohydrate mabolisetm functional genes in PIG. Among the methane metabolism related genes, PIG sample showed higher abundance of methyl-coenzyme M reductase (mcrB/mcrD/mcrG) and trimethylamine-corrinoid protein Co-methyltransferase (mttB) genes. In contrast, genes that down regulate methane emission, such as trimethylamine monooxygenase (tmm) and phosphoserine/homoserine phosphotransferase (thrH), were observed more in NPK sample. In addition, more methanotrophic genes (pmoB/amoB/mxaJ), were found more abundant in PIG sample. Identifying key genes related to methane emission and methane oxidation may provide fundamental information regarding to mechanisms by which use of manure boosts methane emission from rice. The study presented here characterized molecular variation in rice paddy, introduced by the use of pig manure.

침수된 논토양에서는 메탄생성균이 벼 줄기를 타고 올라오는 메탄을 생성하는 것으로 알려져 있고, 그래서 논토양은 대기 메탄의 인위적인 발생원 중 하나로 알려져 있다. 또한 (분뇨)거름을 사용하면 벼로부터 메탄 배출이 증가하는 것으로 연구 결과 알려져 있다. 어떠한 기작으로 (분뇨)거름이 메탄 배출을 증가시키는지 알아보기 위하여, 무기비료를 사용한 논토양(NPK)과 돈분뇨를 처리한 논토양(PIG)에서의 미생물의 메타게놈에 대해 비교분석을 수행하였다. 미생물군집 분류 분석 결과, 메탄생성균과 메탄영양균, 메틸영양균, 초산생성균(acetogen)이 NPK에서 보다 PIG에서 더 풍부하였다. 더욱이 BLAST 비교 분석 결과 탄수화물 대사 기능유전자가 PIG에 더 풍부하였다. 메탄 대사와 관련된 유전자 중에서 메틸-조효소-M-환원효소(mcrB/mcrD/mcrG)와 트리메틸아민-코리노이드 단백질 Co-메틸전달효소(mttB)가 PIG 시료에 더 풍부하였다. 그와는 상대적으로, 트리메틸아민 모노산소첨가효소(tmm)와 포스포세린/호모세린 인산전달효소(thrH) 같은 메탄 배출을 하향 조절하는 유전자는 NPK 시료에서 더 관찰되었다. 메탄영양과 관련된 유전자(pmoB/amoB/mxaJ)들 또한 PIG에서 더 풍부하게 발견되었다. 메탄 배출과 메탄 산화와 관련된 핵심 유전자들을 환경에서 확인함으로써, (분뇨)거름 사용에 의해 벼로부터 메탄 배출이 증가하는 기작에 대해 기초적인 정보를 얻을 수 있을 것이다. 본 연구에 제시된 내용을 통해 돈분료거름을 처리한 논토양 내 미생물의 분자적 변이를 알 수 있었다.

Keywords

References

  1. Amaratunga, K., Goodwin, P.M., O'Connor, C.D., and Anthony, C. 1997. The methanol oxidation genes mxaFJGIR (S) ACKLD in Methylobacterium extorquens. FEMS Microbiol. Lett. 146, 31-38. https://doi.org/10.1111/j.1574-6968.1997.tb10167.x
  2. Bao, Z., Watanabe, A., Sasaki, K., Okubo, T., Tokida, T., Liu, D., Ikeda, S., Imaizumi-Anraku, H., Asakawa, S., Sato, T., et al. 2014b. A rice gene for microbial symbiosis, Oryza sativa CCaMK, reduces CH4 flux in a paddy field with low nitrogen input. Appl. Environ. Microbiol. 80, 1995-2003. https://doi.org/10.1128/AEM.03646-13
  3. Bao, Q., Xiao, K.Q., Chen, Z., Yao, H.Y., and Zhu, Y.G. 2014a. Methane production and methanogenic archaeal communities in two types of paddy soil amended with different amounts of rice straw. FEMS Microbiol. Ecol. 88, 372-385. https://doi.org/10.1111/1574-6941.12305
  4. Bengtsson-Palme, J., Boulund, F., Fick, J., Kristiansson, E., and Larsson, D.G. 2014. Shotgun metagenomics reveals a wide array of antibiotic resistance genes and mobile elements in a polluted lake in India. Front. Microbiol. 5, 648.
  5. Bengtsson-Palme, J., Hartmann, M., Eriksson, K.M., Pal, C., Thorell, K., Larsson, D.G., and Nilsson, R.H. 2015. METAXA2: improved identification and taxonomic classification of small and large subunit rRNA in metagenomic data. Mol. Ecol. Resour. 15, 1403-1414. https://doi.org/10.1111/1755-0998.12399
  6. Birney, D.R.Z.a.E. 2011. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 18, 821-829.
  7. Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., and Madden, T.L. 2009. BLAST+: architecture and applications. BMC Bioinformatics 10, 421. https://doi.org/10.1186/1471-2105-10-421
  8. Chen, Y., Patel, N.A., Crombie, A., Scrivens, J.H., and Murrell, J.C. 2011. Bacterial flavin-containing monooxygenase is trimethylamine monooxygenase. Proc. Natl. Acad. Sci. USA 108, 17791-17796. https://doi.org/10.1073/pnas.1112928108
  9. Conrad, R., Erkel, C., and Liesack, W. 2006. Rice Cluster I methanogens, an important group of Archaea producing greenhouse gas in soil. Curr. Opin. Biotechnol. 17, 262-267. https://doi.org/10.1016/j.copbio.2006.04.002
  10. Conrad, R., Klose, M., Noll, M., Kemnitz, D., and Bodelier, P.L.F. 2008. Soil types links microbial colonization of rice roots to methane emission. Glob Change Biol. 14, 657-669. https://doi.org/10.1111/j.1365-2486.2007.01516.x
  11. Das, S. and Adhya, T.K. 2012. Dynamics of methanogenesis and methanotrophy in tropical paddy soils as influenced by elevated $CO_2$ and temperature interaction. Soil Biol. Biochem. 47, 36-45. https://doi.org/10.1016/j.soilbio.2011.11.020
  12. Das, S., Ghosh, A., and Adhya, T.K. 2011. Nitrous oxide and methane emission from a flooded rice field as influenced by separate and combined application of herbicides bensulfuron methyl and pretilachlor. Chemosphere 84, 54-62. https://doi.org/10.1016/j.chemosphere.2011.02.055
  13. Datta, A., Santra, S.C., and Adhya, T.K. 2013. Effect of inorganic fertilizers (N, P, K) on methane emission from tropical rice field of India. Atmospheric Environment 66, 123-130. https://doi.org/10.1016/j.atmosenv.2012.09.001
  14. Drake, H.L., Gossner, A.S., and Daniel, S.L. 2008. Old acetogens, new light. Ann. N. Y. Acad. Sci. 1125, 100-128. https://doi.org/10.1196/annals.1419.016
  15. Edwards, J., Johnson, C., Santos-Medellin, C., Lurie, E., Podishetty, N.K., Bhatnagar, S., Eisen, J.a., and Sundaresan, V. 2015. Structure, variation, and assembly of the root-associated microbiomes of rice. Proc. Natl. Acad. Sci. USA 112, E911-E920. https://doi.org/10.1073/pnas.1414592112
  16. Erkel, C., Kube, M., Reinhardt, R., and Liesack, W. 2006. Genome of rice cluster I archaea-the key methane producers in the rice rhizosphere. Science 313, 370-372. https://doi.org/10.1126/science.1127062
  17. Fenchel, T. 2011. Bacterial Ecology. DOI: 10.1002/9780470015902.a0000339.pub3.
  18. Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D.W., Haywood, J., Lean, J., Lowe, D.C., and Myhre, G. 2007. Changes in atmospheric constituents and in radiative forcing. Chapter 2. In Climate Change 2007. The Physical Science Basis.
  19. Gaihre, Y., Wassmann, R., Pangga, G., and Aquino, E. 2012. Effect of elevated temperature and rice straw application on methane emission from lowland rice paddy soils. Philippine J. Crop Sci. (Philippines) 37, 10.
  20. Harms, U. and Thauer, R.K. 1996. Methylcobalamin: coenzyme M methyltransferase isoenzymes MtaA and MtbA from Methanosarcina barkeri. Cloning, sequencing and differential transcription of the encoding genes, and functional overexpression of the mtaA gene in Escherichia coli. Eur. J. Biochem. 235, 653-659. https://doi.org/10.1111/j.1432-1033.1996.00653.x
  21. Huson, D.H., Mitra, S., Ruscheweyh, H.J., Weber, N., and Schuster, S.C. 2011. Integrative analysis of environmental sequences using MEGAN4. Genome Res. 21, 1552-1560. https://doi.org/10.1101/gr.120618.111
  22. IPCC. 2007. IPCC fourth assessment report: climate change 2007 synthesis report.
  23. Jones, M., Talfournier, F., Bobrov, A., Grossmann, J.G., Vekshin, N., Sutcliffe, M.J., and Scrutton, N.S. 2002. Electron transfer and conformational change in complexes of trimethylamine dehydrogenase and electron transferring flavoprotein. J. Biol. Chem. 277, 8457-8465. https://doi.org/10.1074/jbc.M111105200
  24. Kanehisa, M., Goto, S., Kawashima, S., and Nakaya, A. 2002. The KEGG databases at GenomeNet. Nucleic Acids Res. 30, 42-46. https://doi.org/10.1093/nar/30.1.42
  25. Kim, S.Y., Pramanik, P., Bodelier, P.L., and Kim, P.J. 2014. Cattle manure enhances methanogens diversity and methane emissions compared to swine manure under rice paddy. PLoS One 9, e113593. https://doi.org/10.1371/journal.pone.0113593
  26. Kruger, M. and Frenzel, P. 2003. Effect of N-fertilization on $CH_4$ oxidation and production, and consequences for $CH_4$ emissions from microcosms and rice fields. Glob Change Biol. 9, 773-784. https://doi.org/10.1046/j.1365-2486.2003.00576.x
  27. Lamendella, R., Domingo, J.W., Ghosh, S., Martinson, J., and Oerther, D.B. 2011. Comparative fecal metagenomics unveils unique functional capacity of the swine gut. BMC Microbiol. 11, 103. https://doi.org/10.1186/1471-2180-11-103
  28. Li, B. and Dewey, C.N. 2011. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12, 323. https://doi.org/10.1186/1471-2105-12-323
  29. Li, X., Dodson, J., Zhou, J., and Zhou, X. 2009. Increases of population and expansion of rice agriculture in Asia, and anthropogenic methane emissions since 5000 BP. Quat. Int. 202, 41-50. https://doi.org/10.1016/j.quaint.2008.02.009
  30. Liou, R.M., Huang, S.N., and Lin, C.W. 2003. Methane emission from fields with differences in nitrogen fertilizers and rice varieties in Taiwan paddy soils. Chemosphere 50, 237-246. https://doi.org/10.1016/S0045-6535(02)00158-3
  31. Lu, Z. and Lu, Y. 2012. Methanocella conradii sp. nov., a thermophilic, obligate hydrogenotrophic methanogen, isolated from chinese rice field soil. PLoS One 7, e35279. https://doi.org/10.1371/journal.pone.0035279
  32. Ma, K.E., Qiu, Q., and Lu, Y. 2010. Microbial mechanism for rice variety control on methane emission from rice field soil. Global Change Biol. 16, 3085-3095.
  33. Maupin-Furlow, J.A. and Ferry, J.G. 1996. Analysis of the CO dehydrogenase/acetyl-coenzyme A synthase operon of Methanosarcina thermophila. J. Bacteriol. 178, 6849-6856. https://doi.org/10.1128/jb.178.23.6849-6856.1996
  34. Meyer, F., Paarmann, D., D'Souza, M., Olson, R., Glass, E.M., Kubal, M., Paczian, T., Rodriguez, A., Stevens, R., Wilke, A., et al. 2008. The metagenomics RAST server - a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics 9, 386. https://doi.org/10.1186/1471-2105-9-386
  35. Mohanty, S.R., Bodelier, P.L.E., Floris, V., and Conrad, R. 2006. Differential effects of nitrogenous fertilizers on methane-consuming microbes in rice field and forest soils differential effects of nitrogenous fertilizers on methane-consuming microbes in rice field and forest soils. Appl. Environ. Microbiol. 72, 1346-1354. https://doi.org/10.1128/AEM.72.2.1346-1354.2006
  36. Muller, V. 2003. Energy conservation in acetogenic bacteria. Appl. Environ. Microbiol. 69, 6345-6353. https://doi.org/10.1128/AEM.69.11.6345-6353.2003
  37. Muller, V. and Frerichs, J. 2013. Acetogenic Bacteria. In Encyclopedia of life sciences. www.els.net.
  38. Nguyen, S., Guevarra, R., Kim, J., Ho, C., Trinh, M., and Unno, T. 2015. Impacts of initial fertilizers and irrigation systems on paddy methanogens and methane emission. Water Air Soil Pollut. 226, 1-11.
  39. Pandey, A., Mai, V.T., Vu, D.Q., Bui, T.P.L., Mai, T.L.A., Jensen, L.S., and de Neergaard, A. 2014. Organic matter and water management strategies to reduce methane and nitrous oxide emissions from rice paddies in Vietnam. Agriculture Ecosystems & Environment 196, 137-146. https://doi.org/10.1016/j.agee.2014.06.010
  40. Peng, J., Lu, Z., Rui, J., and Lu, Y. 2008. Dynamics of the methanogenic archaeal community during plant residue decomposition in an anoxic rice field soil. Appl. Environ. Microbiol. 74, 2894-2901. https://doi.org/10.1128/AEM.00070-08
  41. Pritchett, M.A. and Metcalf, W.W. 2005. Genetic, physiological and biochemical characterization of multiple methanol methyltransferase isozymes in Methanosarcina acetivorans C2A. Mol. Microbiol. 56, 1183-1194. https://doi.org/10.1111/j.1365-2958.2005.04616.x
  42. Sakai, S., Imachi, H., Sekiguchi, Y., Ohashi, A., Harada, H., and Kamagata, Y. 2007. Isolation of key methanogens for global methane emission from rice paddy fields: a novel isolate affiliated with the clone cluster rice cluster I. Appl. Environ. Microbiol. 73, 4326-4331. https://doi.org/10.1128/AEM.03008-06
  43. Scheller, S., Goenrich, M., Thauer, R.K., and Jaun, B. 2013. Methylcoenzyme M reductase from methanogenic archaea: isotope effects on the formation and anaerobic oxidation of methane. J. Am. Chem. Soc. 135, 14975-14984. https://doi.org/10.1021/ja406485z
  44. Singh, A. and Dubey, S.K. 2012. Temporal variation in methanogenic community structure and methane production potential of tropical rice ecosystem. Soil Biol. Biochem. 48, 162-166. https://doi.org/10.1016/j.soilbio.2012.01.022
  45. Singh, A., Singh, R.S., Upadhyay, S.N., Joshi, C.G., Tripathi, A.K., and Dubey, S.K. 2012. Community structure of methanogenic archaea and methane production associated with compost-treated tropical rice-field soil. FEMS Microbiol. Ecol. 82, 118-134. https://doi.org/10.1111/j.1574-6941.2012.01411.x
  46. Singla, A., Sakata, R., Hanazawa, S., and Inubushi, K. 2014. Methane production/oxidation potential and methanogenic archaeal diversity in two paddy soils of Japan. Int. J. Ecol. Environ. Sci. 40, 49-55.
  47. Su, J., Hu, C., Yan, X., Jin, Y., Chen, Z., Guan, Q., Wang, Y., Zhong, D., Jansson, C., Wang, F., et al. 2015. Expression of barley SUSIBA2 transcription factor yields high-starch low-methane rice. Nature 523, 602-606. https://doi.org/10.1038/nature14673
  48. Tallant, T.C. and Krzycki, J.A. 1997. Methylthiol:coenzyme M methyltransferase from Methanosarcina barkeri, an enzyme of methanogenesis from dimethylsulfide and methylmercaptopropionate. J. Bacteriol. 179, 6902-6911. https://doi.org/10.1128/jb.179.22.6902-6911.1997
  49. Tavormina, P.L., Orphan, V.J., Kalyuzhnaya, M.G., Jetten, M.S., and Klotz, M.G. 2011. A novel family of functional operons encoding methane/ammonia monooxygenase-related proteins in gammaproteobacterial methanotrophs. Environ. Microbiol. Rep. 3, 91-100. https://doi.org/10.1111/j.1758-2229.2010.00192.x
  50. Thauer, R.K. 1998. Biochemistry of methanogenesis, a tribute to Marjory Stephenson. 1998 Marjory Stephenson Prize Lecture. MIcrobiology 144, 2377-2406. https://doi.org/10.1099/00221287-144-9-2377
  51. Yang, C.C., Packman, L.C., and Scrutton, N.S. 1995. The primary structure of Hyphomicrobium X dimethylamine dehydrogenase: Relationship to trimethylamine dehydrogenase and implications for substrate recognition. Eur. J. Biochem. 232, 264-271. https://doi.org/10.1111/j.1432-1033.1995.tb20808.x
  52. Yuan, Q., Pump, J., and Conrad, R. 2013. Straw application in paddy soil enhances methane production also from other carbon sources. Biogeosciences Discussions 10, 14169-14193. https://doi.org/10.5194/bgd-10-14169-2013
  53. Zheng, Y., Huang, R., Wang, B.Z., Bodelier, P.L.E., and Jia, Z.J. 2014. Competitive interactions between methane- and ammonia-oxidizing bacteria modulate carbon and nitrogen cycling in paddy soil. Biogeosciences 11, 3353-3368. https://doi.org/10.5194/bg-11-3353-2014