Browse > Article
http://dx.doi.org/10.7845/kjm.2016.6007

Metagenomics analysis of methane metabolisms in manure fertilized paddy soil  

Nguyen, Son G. (Faculty of Biotechnology, College of Applied Life Sciences, SARI, Jeju National University)
Ho, Cuong Tu (Institute of Environmental Technology, Vietnam Academy of Science and Technology (VAST))
Lee, Ji-Hoon (Department of Bioenvironmental Chemistry, Chonbuk National University)
Unno, Tatsuya (Faculty of Biotechnology, College of Applied Life Sciences, SARI, Jeju National University)
Publication Information
Korean Journal of Microbiology / v.52, no.2, 2016 , pp. 157-165 More about this Journal
Abstract
Under flooded rice fields, methanogens produce methane which comes out through rice stalks, thus rice fields are known as one of the anthropogenic sources of atmospheric methane. Studies have shown that use of manure increases amount of methane emission from rice. To investigate mechanisms by which manure boosts methane emission, comparative soil metagenomics between inorganically (NPK) and pig manure fertilized paddy soils (PIG) were conducted. Results from taxonomy analysis showed that more abundant methanogens, methanotrophs, methylotrophs, and acetogens were found in PIG than in NPK. In addition, BLAST results indicated more abundant carbohydrate mabolisetm functional genes in PIG. Among the methane metabolism related genes, PIG sample showed higher abundance of methyl-coenzyme M reductase (mcrB/mcrD/mcrG) and trimethylamine-corrinoid protein Co-methyltransferase (mttB) genes. In contrast, genes that down regulate methane emission, such as trimethylamine monooxygenase (tmm) and phosphoserine/homoserine phosphotransferase (thrH), were observed more in NPK sample. In addition, more methanotrophic genes (pmoB/amoB/mxaJ), were found more abundant in PIG sample. Identifying key genes related to methane emission and methane oxidation may provide fundamental information regarding to mechanisms by which use of manure boosts methane emission from rice. The study presented here characterized molecular variation in rice paddy, introduced by the use of pig manure.
Keywords
metagenomics; methane; methanogens; microbial community; rice;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bengtsson-Palme, J., Hartmann, M., Eriksson, K.M., Pal, C., Thorell, K., Larsson, D.G., and Nilsson, R.H. 2015. METAXA2: improved identification and taxonomic classification of small and large subunit rRNA in metagenomic data. Mol. Ecol. Resour. 15, 1403-1414.   DOI
2 Birney, D.R.Z.a.E. 2011. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 18, 821-829.
3 Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., and Madden, T.L. 2009. BLAST+: architecture and applications. BMC Bioinformatics 10, 421.   DOI
4 Chen, Y., Patel, N.A., Crombie, A., Scrivens, J.H., and Murrell, J.C. 2011. Bacterial flavin-containing monooxygenase is trimethylamine monooxygenase. Proc. Natl. Acad. Sci. USA 108, 17791-17796.   DOI
5 Conrad, R., Erkel, C., and Liesack, W. 2006. Rice Cluster I methanogens, an important group of Archaea producing greenhouse gas in soil. Curr. Opin. Biotechnol. 17, 262-267.   DOI
6 Conrad, R., Klose, M., Noll, M., Kemnitz, D., and Bodelier, P.L.F. 2008. Soil types links microbial colonization of rice roots to methane emission. Glob Change Biol. 14, 657-669.   DOI
7 Das, S. and Adhya, T.K. 2012. Dynamics of methanogenesis and methanotrophy in tropical paddy soils as influenced by elevated $CO_2$ and temperature interaction. Soil Biol. Biochem. 47, 36-45.   DOI
8 Das, S., Ghosh, A., and Adhya, T.K. 2011. Nitrous oxide and methane emission from a flooded rice field as influenced by separate and combined application of herbicides bensulfuron methyl and pretilachlor. Chemosphere 84, 54-62.   DOI
9 Datta, A., Santra, S.C., and Adhya, T.K. 2013. Effect of inorganic fertilizers (N, P, K) on methane emission from tropical rice field of India. Atmospheric Environment 66, 123-130.   DOI
10 Drake, H.L., Gossner, A.S., and Daniel, S.L. 2008. Old acetogens, new light. Ann. N. Y. Acad. Sci. 1125, 100-128.   DOI
11 Edwards, J., Johnson, C., Santos-Medellin, C., Lurie, E., Podishetty, N.K., Bhatnagar, S., Eisen, J.a., and Sundaresan, V. 2015. Structure, variation, and assembly of the root-associated microbiomes of rice. Proc. Natl. Acad. Sci. USA 112, E911-E920.   DOI
12 Erkel, C., Kube, M., Reinhardt, R., and Liesack, W. 2006. Genome of rice cluster I archaea-the key methane producers in the rice rhizosphere. Science 313, 370-372.   DOI
13 Fenchel, T. 2011. Bacterial Ecology. DOI: 10.1002/9780470015902.a0000339.pub3.   DOI
14 Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D.W., Haywood, J., Lean, J., Lowe, D.C., and Myhre, G. 2007. Changes in atmospheric constituents and in radiative forcing. Chapter 2. In Climate Change 2007. The Physical Science Basis.
15 Gaihre, Y., Wassmann, R., Pangga, G., and Aquino, E. 2012. Effect of elevated temperature and rice straw application on methane emission from lowland rice paddy soils. Philippine J. Crop Sci. (Philippines) 37, 10.
16 Harms, U. and Thauer, R.K. 1996. Methylcobalamin: coenzyme M methyltransferase isoenzymes MtaA and MtbA from Methanosarcina barkeri. Cloning, sequencing and differential transcription of the encoding genes, and functional overexpression of the mtaA gene in Escherichia coli. Eur. J. Biochem. 235, 653-659.   DOI
17 Kanehisa, M., Goto, S., Kawashima, S., and Nakaya, A. 2002. The KEGG databases at GenomeNet. Nucleic Acids Res. 30, 42-46.   DOI
18 Huson, D.H., Mitra, S., Ruscheweyh, H.J., Weber, N., and Schuster, S.C. 2011. Integrative analysis of environmental sequences using MEGAN4. Genome Res. 21, 1552-1560.   DOI
19 IPCC. 2007. IPCC fourth assessment report: climate change 2007 synthesis report.
20 Jones, M., Talfournier, F., Bobrov, A., Grossmann, J.G., Vekshin, N., Sutcliffe, M.J., and Scrutton, N.S. 2002. Electron transfer and conformational change in complexes of trimethylamine dehydrogenase and electron transferring flavoprotein. J. Biol. Chem. 277, 8457-8465.   DOI
21 Kim, S.Y., Pramanik, P., Bodelier, P.L., and Kim, P.J. 2014. Cattle manure enhances methanogens diversity and methane emissions compared to swine manure under rice paddy. PLoS One 9, e113593.   DOI
22 Kruger, M. and Frenzel, P. 2003. Effect of N-fertilization on $CH_4$ oxidation and production, and consequences for $CH_4$ emissions from microcosms and rice fields. Glob Change Biol. 9, 773-784.   DOI
23 Lamendella, R., Domingo, J.W., Ghosh, S., Martinson, J., and Oerther, D.B. 2011. Comparative fecal metagenomics unveils unique functional capacity of the swine gut. BMC Microbiol. 11, 103.   DOI
24 Li, B. and Dewey, C.N. 2011. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12, 323.   DOI
25 Li, X., Dodson, J., Zhou, J., and Zhou, X. 2009. Increases of population and expansion of rice agriculture in Asia, and anthropogenic methane emissions since 5000 BP. Quat. Int. 202, 41-50.   DOI
26 Maupin-Furlow, J.A. and Ferry, J.G. 1996. Analysis of the CO dehydrogenase/acetyl-coenzyme A synthase operon of Methanosarcina thermophila. J. Bacteriol. 178, 6849-6856.   DOI
27 Liou, R.M., Huang, S.N., and Lin, C.W. 2003. Methane emission from fields with differences in nitrogen fertilizers and rice varieties in Taiwan paddy soils. Chemosphere 50, 237-246.   DOI
28 Lu, Z. and Lu, Y. 2012. Methanocella conradii sp. nov., a thermophilic, obligate hydrogenotrophic methanogen, isolated from chinese rice field soil. PLoS One 7, e35279.   DOI
29 Ma, K.E., Qiu, Q., and Lu, Y. 2010. Microbial mechanism for rice variety control on methane emission from rice field soil. Global Change Biol. 16, 3085-3095.
30 Meyer, F., Paarmann, D., D'Souza, M., Olson, R., Glass, E.M., Kubal, M., Paczian, T., Rodriguez, A., Stevens, R., Wilke, A., et al. 2008. The metagenomics RAST server - a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics 9, 386.   DOI
31 Mohanty, S.R., Bodelier, P.L.E., Floris, V., and Conrad, R. 2006. Differential effects of nitrogenous fertilizers on methane-consuming microbes in rice field and forest soils differential effects of nitrogenous fertilizers on methane-consuming microbes in rice field and forest soils. Appl. Environ. Microbiol. 72, 1346-1354.   DOI
32 Muller, V. 2003. Energy conservation in acetogenic bacteria. Appl. Environ. Microbiol. 69, 6345-6353.   DOI
33 Muller, V. and Frerichs, J. 2013. Acetogenic Bacteria. In Encyclopedia of life sciences. www.els.net.
34 Nguyen, S., Guevarra, R., Kim, J., Ho, C., Trinh, M., and Unno, T. 2015. Impacts of initial fertilizers and irrigation systems on paddy methanogens and methane emission. Water Air Soil Pollut. 226, 1-11.
35 Sakai, S., Imachi, H., Sekiguchi, Y., Ohashi, A., Harada, H., and Kamagata, Y. 2007. Isolation of key methanogens for global methane emission from rice paddy fields: a novel isolate affiliated with the clone cluster rice cluster I. Appl. Environ. Microbiol. 73, 4326-4331.   DOI
36 Pandey, A., Mai, V.T., Vu, D.Q., Bui, T.P.L., Mai, T.L.A., Jensen, L.S., and de Neergaard, A. 2014. Organic matter and water management strategies to reduce methane and nitrous oxide emissions from rice paddies in Vietnam. Agriculture Ecosystems & Environment 196, 137-146.   DOI
37 Peng, J., Lu, Z., Rui, J., and Lu, Y. 2008. Dynamics of the methanogenic archaeal community during plant residue decomposition in an anoxic rice field soil. Appl. Environ. Microbiol. 74, 2894-2901.   DOI
38 Pritchett, M.A. and Metcalf, W.W. 2005. Genetic, physiological and biochemical characterization of multiple methanol methyltransferase isozymes in Methanosarcina acetivorans C2A. Mol. Microbiol. 56, 1183-1194.   DOI
39 Scheller, S., Goenrich, M., Thauer, R.K., and Jaun, B. 2013. Methylcoenzyme M reductase from methanogenic archaea: isotope effects on the formation and anaerobic oxidation of methane. J. Am. Chem. Soc. 135, 14975-14984.   DOI
40 Singh, A. and Dubey, S.K. 2012. Temporal variation in methanogenic community structure and methane production potential of tropical rice ecosystem. Soil Biol. Biochem. 48, 162-166.   DOI
41 Singh, A., Singh, R.S., Upadhyay, S.N., Joshi, C.G., Tripathi, A.K., and Dubey, S.K. 2012. Community structure of methanogenic archaea and methane production associated with compost-treated tropical rice-field soil. FEMS Microbiol. Ecol. 82, 118-134.   DOI
42 Tavormina, P.L., Orphan, V.J., Kalyuzhnaya, M.G., Jetten, M.S., and Klotz, M.G. 2011. A novel family of functional operons encoding methane/ammonia monooxygenase-related proteins in gammaproteobacterial methanotrophs. Environ. Microbiol. Rep. 3, 91-100.   DOI
43 Singla, A., Sakata, R., Hanazawa, S., and Inubushi, K. 2014. Methane production/oxidation potential and methanogenic archaeal diversity in two paddy soils of Japan. Int. J. Ecol. Environ. Sci. 40, 49-55.
44 Su, J., Hu, C., Yan, X., Jin, Y., Chen, Z., Guan, Q., Wang, Y., Zhong, D., Jansson, C., Wang, F., et al. 2015. Expression of barley SUSIBA2 transcription factor yields high-starch low-methane rice. Nature 523, 602-606.   DOI
45 Tallant, T.C. and Krzycki, J.A. 1997. Methylthiol:coenzyme M methyltransferase from Methanosarcina barkeri, an enzyme of methanogenesis from dimethylsulfide and methylmercaptopropionate. J. Bacteriol. 179, 6902-6911.   DOI
46 Thauer, R.K. 1998. Biochemistry of methanogenesis, a tribute to Marjory Stephenson. 1998 Marjory Stephenson Prize Lecture. MIcrobiology 144, 2377-2406.   DOI
47 Yang, C.C., Packman, L.C., and Scrutton, N.S. 1995. The primary structure of Hyphomicrobium X dimethylamine dehydrogenase: Relationship to trimethylamine dehydrogenase and implications for substrate recognition. Eur. J. Biochem. 232, 264-271.   DOI
48 Yuan, Q., Pump, J., and Conrad, R. 2013. Straw application in paddy soil enhances methane production also from other carbon sources. Biogeosciences Discussions 10, 14169-14193.   DOI
49 Zheng, Y., Huang, R., Wang, B.Z., Bodelier, P.L.E., and Jia, Z.J. 2014. Competitive interactions between methane- and ammonia-oxidizing bacteria modulate carbon and nitrogen cycling in paddy soil. Biogeosciences 11, 3353-3368.   DOI
50 Amaratunga, K., Goodwin, P.M., O'Connor, C.D., and Anthony, C. 1997. The methanol oxidation genes mxaFJGIR (S) ACKLD in Methylobacterium extorquens. FEMS Microbiol. Lett. 146, 31-38.   DOI
51 Bao, Z., Watanabe, A., Sasaki, K., Okubo, T., Tokida, T., Liu, D., Ikeda, S., Imaizumi-Anraku, H., Asakawa, S., Sato, T., et al. 2014b. A rice gene for microbial symbiosis, Oryza sativa CCaMK, reduces CH4 flux in a paddy field with low nitrogen input. Appl. Environ. Microbiol. 80, 1995-2003.   DOI
52 Bao, Q., Xiao, K.Q., Chen, Z., Yao, H.Y., and Zhu, Y.G. 2014a. Methane production and methanogenic archaeal communities in two types of paddy soil amended with different amounts of rice straw. FEMS Microbiol. Ecol. 88, 372-385.   DOI
53 Bengtsson-Palme, J., Boulund, F., Fick, J., Kristiansson, E., and Larsson, D.G. 2014. Shotgun metagenomics reveals a wide array of antibiotic resistance genes and mobile elements in a polluted lake in India. Front. Microbiol. 5, 648.