• Title/Summary/Keyword: Methane Productivity

검색결과 54건 처리시간 0.024초

미세조류의 Methane 발효특성

  • 강창민;최명락
    • 한국미생물·생명공학회지
    • /
    • 제24권5호
    • /
    • pp.597-603
    • /
    • 1996
  • This study was carried out to examine degradation characteristics of microalgae Chlorella vulgaris in methane fermentation. We measured COD and VS reduction, gas and methane productivity, VFA (volatile fatty acid), respectively. Then we calculated material balance and hydrolysis rates in soluble and solid material. The substrate concentration was controlled from 14 gCOD$_{cr}$/l to 64 gCOD$_{cr}$/l in batch cultures, and HRT (hydraulic retention time) controlled from 2 days to 30 days in continuous experi- ments. The results were as follows. In batch culture, accumulated gas productivity increased with the increase of the substrate concentration. The SS and VSS was removed all about 30% increase of substrate concentration and the most of the degradable material removed during the first 10 days. The curve of gas and methane production rate straightly increased until substrate concentration is 26 gCOD$_{cr}$/l. In continuous culture experiments, the removal rates at HRT 10days were 20% for total COD and TOC, respectively. At longer HRT, there was no increase in the removal efficiency. At HRT 15 days, the removal rates were 30% for SS and VSS, respectively. Soluble organic materials were rapidly degraded, and so there was no accumulated. Soluble COD concentration was not increase regardless of HRT-increasing. That meaned the hydrolysis was one of the rate-limiting stage of methane fermentation. The first-order rate constants of hydrolysis were 0.23-0.28 day$^{-1}$ for VSS, and 0.07-0.08 day$^{-1}$ for COD.

  • PDF

Strategies to Mitigate Enteric Methane Emissions from Ruminant Animals

  • Tseten, Tenzin;Sanjorjo, Rey Anthony;Kwon, Moonhyuk;Kim, Seon-Won
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권3호
    • /
    • pp.269-277
    • /
    • 2022
  • Human activities account for approximately two-thirds of global methane emissions, wherein the livestock sector is the single massive methane emitter. Methane is a potent greenhouse gas of over 21 times the warming effect of carbon dioxide. In the rumen, methanogens produce methane as a by-product of anaerobic fermentation. Methane released from ruminants is considered as a loss of feed energy that could otherwise be used for productivity. Economic progress and growing population will inflate meat and milk product demands, causing elevated methane emissions from this sector. In this review, diverse approaches from feed manipulation to the supplementation of organic and inorganic feed additives and direct-fed microbial in mitigating enteric methane emissions from ruminant livestock are summarized. These approaches directly or indirectly alter the rumen microbial structure thereby reducing rumen methanogenesis. Though many inorganic feed additives have remarkably reduced methane emissions from ruminants, their usage as feed additives remains unappealing because of health and safety concerns. Hence, feed additives sourced from biological materials such as direct-fed microbials have emerged as a promising technique in mitigating enteric methane emissions.

중온혐기성소화조에서 외부 $CO_2$ Stripping을 이용한 In-situ 고순도 메탄회수 공정 개발 (In-situ Methane Enrichment System Coupled with External $CO_2$ Stripper in Mesophilic Anaerobic Digestion)

  • 강호;정지현;임선애;이혜미
    • 대한환경공학회지
    • /
    • 제34권3호
    • /
    • pp.155-161
    • /
    • 2012
  • 본 연구에서는 고순도 메탄을 회수하기 위해서 Plug Flow Reactor와 External $CO_2$ Stripper를 결합한 중온 Methane Enhancement System을 개발하였다. 반응조 운전인자로서 알칼리도와 Leachate 순환율(LRR, Leachate Recycle Rate)이 바이오가스의 조성과 생성량 및 TVS 제거효율에 미치는 영향을 규명하였다. 고순도 메탄회수 공정 운전결과 OLR 2 g TVS/L-d, 알칼리도 4 g/L as $CaCO_3$, Leachate 순환율 3 v/v-d일 때 평균 94%의 높은 메탄함량을 나타내 고순도 메탄회수를 위한 최적조건임이 밝혀졌다. 이때 1일 반응조 단위 부피당 0.71부피의 메탄이 생성되었으며, TVS 제거율은 79%로서 Control Reactor의 94% 수준을 달성하였다.

Batch Conversion of Methane to Methanol Using Methylosinus trichosporium OB3b as Biocatalyst

  • Hwang, In Yeub;Hur, Dong Hoon;Lee, Jae Hoon;Park, Chang-Ho;Chang, In Seop;Lee, Jin Won;Lee, Eun Yeol
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권3호
    • /
    • pp.375-380
    • /
    • 2015
  • Recently, methane has attracted much attention as an alternative carbon feedstock since it is the major component of abundant shale and natural gas. In this work, we produced methanol from methane using whole cells of Methylosinus trichosporium OB3b as the biocatalyst. M. trichosporium OB3b was cultured on NMS medium with a supply of 7:3 air/methane ratio at 30℃. The optimal concentrations of various methanol dehydrogenase inhibitors such as potassium phosphate and EDTA were determined to be 100 and 0.5 mM, respectively, for an efficient production of methanol. Sodium formate (40 mM) as a reducing power source was added to enhance the conversion efficiency. A productivity of 49.0 mg/l·h, titer of 0.393 g methanol/l, and conversion of 73.8% (mol methanol/mol methane) were obtained under the optimized batch condition.

감압법을 이용한 메탄 하이드레이트 생산에 대한 연구 (Study on methane hydrate production using depressurization method)

  • 박성식;김남진
    • 한국태양에너지학회 논문집
    • /
    • 제30권1호
    • /
    • pp.34-41
    • /
    • 2010
  • Gas hydrates are solid solutions when water molecules are linked through hydrogen bonding and create host lattice cavities that can enclose many kinds of guest(gas) molecules. There are plenty of methane(gas) hydrate in the earth and distributed widely at offshore and permafrost. Several schemes, to produce methane hydrates, have been studied. In this study, depressurization method has been utilized for the numerical model due to it's simplicity and effectiveness. IMPES method has been used for numerical analysis to get the saturation and velocity profile of each phase and pressure profile, velocity of dissociation front progress and the quantity of produced gas. The values calculated for the sample length of 10m, show that methane hydrates has been dissolved completely in approximately 223 minutes and the velocity of dissociation front progress is 3.95㎝ per minute. The volume ratio of the produced gas in the porous media is found to be about 50%. Analysing the saturation profile and the velocity profile from the numerical results, the permeability of each phase in porous media is considered to be the most important factor in the two phase flow propagation. Consequently, permeability strongly influences the productivity of gas in porous media for methane hydrates.

Evaluation of the Biogas Productivity Potential of Fish Waste: A Lab Scale Batch Study

  • Kafle, Gopi Krishna;Kim, Sang Hun
    • Journal of Biosystems Engineering
    • /
    • 제37권5호
    • /
    • pp.302-313
    • /
    • 2012
  • Purpose: The biogas productivity potential of fish waste (FW) was evaluated. Methods: Batch trials were carried out in 1.3 L glass digesters kept in a temperature controlled chambers at $36.5^{\circ}C$. The first order kinetic model and the modified Gompertz model were evaluated for biogas production. The Chen and Hashimoto model was used to determine the critical hydraulic retention time (HRT $_{Critical}$) for FW under mesophilic conditions. The feasibility of co-digestion of FW with animal manure was studied. Results: The biogas and methane potential of FW was found to be 757 and 554 mL/g VS, respectively. The methane content in the biogas produced from FW was found to be 73% and VS removal was found to be 77%. There was smaller difference between measured and predicted biogas production when using the modified Gompertz model (16.5%) than using first order kinetic model (31%). The time period for 80%-90% of biogas production ($T_{80-90}$) from FW was calculated to be 50.3-53.5 days. Similarly, the HRT $_{Critical}$ for FW was calculated to be 13 days under mesophilic conditions. The methane production from swine manure (SM) and cow manure (CM) digesters could be enhanced by 13%-115% and 17%-152% by mixing 10%-90% of FW with SM and CM, respectively. Conclusions: The FW was found to be highly potential substrate for anaerobic digestion for biogas production. The modified Gompertz model could be more appropriate in describing anaerobic digestion process of FW. It could be promising for co-digestion of FW with animal manure.

경기도 화성시 벼 재배지의 기후스마트 농업 기반의 평가 (Climate-Smart Agriculture(CSA)-Based Assessment of a Local Rice Cultivation in Hwaseong-city, Gyeonggi-do)

  • 주옥정;소호섭;이상우;이영순
    • 한국환경농학회지
    • /
    • 제41권1호
    • /
    • pp.32-40
    • /
    • 2022
  • BACKGROUND: Climate-smart agriculture (CSA) has been proposed for sustainable agriculture and food security in an agricultural ecosystem disturbed by climate change. However, scientific approaches to local agricultural ecosystems to realize CSA are rare. This study attempted to evaluate the weather condition, rice production, and greenhouse gas emissions from the rice cultivation in Hwaseong-si, Gyeonggi-do to fulfill CSA of the rice cultivation. METHODS AND RESULTS: Over the past 3 years (2017~2019), Chucheong rice cultivar yield and methane emissions were analyzed from the rice field plot (37°13'15"N, 127° 02'22"E) in the Gyeonggi-do Agricultural Research and Extension Services located in Gisan-dong, Hwaseong-si, Gyeonggi-do. Methane samples were collected from three automated closed chambers installed in the plot. The weather data measured through automatic weather station located in near the plot were analyzed. CONCLUSION(S): The rice productivity was found to vary with weather environment in the agricultural ecosystem. And methane emissions are high in a favorable weather condition for rice growth. Therefore, it is necessary to minimize the trade-off between the greenhouse gas emission target for climate change mitigation and productivity improvement for CSA in a local rice cultivation.

판지슬러지와 하수슬러지를 이용한 혐기성 처리 공정에서 메탄 생산 (Methane Production from the Mixture of Paperboard Sludge and Sewage Sludge in an Anaerobic Treatment Process)

  • 최석순;이현민;정태영;염승호
    • 공업화학
    • /
    • 제23권2호
    • /
    • pp.228-231
    • /
    • 2012
  • 본 연구에서는 혐기성 생물 반응조에서 35일 동안 배양된 하수슬러지와 판지슬러지를 혼합한 후, 초음파 파쇄기를 이용한 고농도 유기성 폐기물의 회분식 혐기 소화 공정에서 메탄 생산 특성이 고찰되었다. 초음파 파쇄기의 진폭이 높아질수록 Soluble Chemical Oxygen Demand (SCOD)가 증가함으로써 판지슬러지의 효과적 가용화가 이루어졌다. 또한, 메탄 생산성 향상을 위한 초음파 파쇄기의 최적 진폭이 $142.5\;{\mu}m$임을 구하였으며, 혐기소화 기간이 길러질수록 메탄 생산량은 증가하였다. 그리고, 바이오매스 변화(6000, 9000, 12000 mg/L)에 의한 혐기성 소화처리가 이루어졌을 때, 미생물 농도가 높아질수록 메탄 생산량이 모두 증가함을 알 수 있었다. 이러한 실험 결과들은 판지슬러지와 하수슬러지가 혼합된 고농도 유기성 폐기물의 혐기성 소화 공정에 의한 메탄 생산성을 향상시키는 자료로 활용될 수 있을 것이다.

Influence of complex geological structure on horizontal well productivity of coalbed methane

  • Qin, Bing;Shi, Zhan-Shan;Sun, Wei-Ji;Liang, Bing;Hao, Jian-Feng
    • Geomechanics and Engineering
    • /
    • 제29권2호
    • /
    • pp.145-154
    • /
    • 2022
  • Complex geological conditions have a great influence on the mining of coalbed methane (CBM), which affects the extraction efficiency of CBM. This investigation analyzed the complicated geological conditions in the Liujia CBM block of Fuxin. A geological model of heterogeneities CBM reservoirs was established to study the influence of strike direction of igneous rocks and fault structures on horizontal well layout. Subsequently, the dual-porosity and dual-permeability mathematical model was established, which considers the dynamic changes of porosity and permeability caused by gas adsorption, desorption, pressure change. The results show that the production curve is in good agreement with the actual by considering gas seepage in matrix pores in the model. Complicated geological structures affect the pressure expansion of horizontal wells, especially, the closer to the fault structure, the more significant the effect, the slower the pressure drop, and the smaller the desorption area. When the wellbore extends to the fault, the pressure expansion is blocked by the fault and the productivity is reduced. In the study area, the optimal distance to the fault is 70 m. When the horizontal wellbore is perpendicular to the direction of coal seam igneous rock, the productivity is higher than that of parallel igneous rock, and the horizontal well bore should be perpendicular to the cleat direction. However, the well length is limited due to the dense distribution of igneous rocks in the Liujia CBM block. Therefore, the horizontal well pumping in the study area should be arranged along the direction of igneous rock and parallel plane cleats. It is found that the larger the area surrounded by igneous rock, the more favorable the productivity. In summary, the reasonable layout of horizontal wells should make full use of the advantages of igneous rock, faults and other complex geological conditions to achieve the goal of high and stable production.

미세조류의 전처리에 따른 메탄발효 특성 (The Pretreatment Effects on Methane Fermentation of Microalgal Biomass)

  • 강창민
    • 대한환경공학회지
    • /
    • 제22권5호
    • /
    • pp.849-859
    • /
    • 2000
  • 미세조류의 전처리에 따른 용해효과와 메탄발효과정의 분해특성을 살폈다. 조류의 화학적 특성은 VS가 TS의 86.1%를 차지하고 단백질이 VS의 63.5%를 차지했다. 또 C : N : P는 26.4 : 4.9 : 1이었다. 용존성물질을 기준한 각 처리방법별 용해(lysis)효과는 처리시간 및 처리온도가 커질수록 증가했고 무처리에 비해 초음파(100분) 7.7배, 초음파(10분) 4.5배, 열처리($120^{\circ}C$) 3.5배, 열처리($50^{\circ}C$) 2.9배, 알칼리처리(pH 13) 6.1배 및 산처리(pH 3) 2.6배로 초음파처리가 가장 효과적이었다. VFA중 초산의 농도는 전처리 조류가 무처리에 비해 전반적으로 높게 나타나 전처리가 유기산 생성에 효과적이었고 생성농도는 초음파, 산 알칼리, 열처리 순으로 높았다. 프로피온산은 초음파, 산처리, 열처리순으로 높게 나타났다. Vial test 결과, 전처리 시료의 메탄함량은 시간경과와 더불어 증가하는 경향을 나타내었으나, 알칼리처리 시료의 경우 저해현상을 나타내었다. 25일째의 총가스 및 메탄생성량은 초음파(100분), 무처리, 열처리($120^{\circ}C$), 열처리($50^{\circ}C$), 산처리(pH 3), 초음파(10분) 및 알칼리 처리(pH 13) 순으로 높게 나타났다.

  • PDF