Batch Conversion of Methane to Methanol Using Methylosinus trichosporium OB3b as Biocatalyst |
Hwang, In Yeub
(Department of Chemical Engineering, Kyung Hee University)
Hur, Dong Hoon (Department of Chemical Engineering, Kyung Hee University) Lee, Jae Hoon (Department of Chemical Engineering, Kyung Hee University) Park, Chang-Ho (Department of Chemical Engineering, Kyung Hee University) Chang, In Seop (School of Environmental Science and Engineering, Gwangju Institute of Science and Technology) Lee, Jin Won (Department of Chemical and Biomolecular Engineering, Sogang University) Lee, Eun Yeol (Department of Chemical Engineering, Kyung Hee University) |
1 | Conrado RJ, Gonzalez R. 2014. Envisioning the bioconversion of methane to liquid fuels. Science 343: 621-623. DOI ScienceOn |
2 | Culpepper MA, Rosenzweig AC. 2012. Architecture and active site of particulate methane monooxygenase. Crit. Rev. Biochem. Mol. Biol. 47: 483-492. DOI ScienceOn |
3 | Duan C, Luo M, Xing X. 2011. High-rate conversion of methane to methanol by Methylosinus trichosporium OB3b. Bioresour. Technol. 102: 7349-7353. DOI ScienceOn |
4 | Friedle S, Reisner E, Lippard SJ 2010. Current challenges of modeling diiron enzyme active sites for dioxygen activation by biomimetic synthetic complexes. Chem. Soc. Rev. 39: 2768-2779. DOI ScienceOn |
5 | Hoehler TM, Alperin MJ. 2014. Biogeochemistry: methane minimalism. Nature 507: 436-437. DOI ScienceOn |
6 | Gilbert B, McDonald IR, Finch R, Stafford GP, Nielsen AK, Murrell JC. 2000. Molecular analysis of the pmo (particulate methane monooxygenase) operons from two type II methanotrophs. Appl. Environ. Microbiol. 66: 966-975. DOI |
7 | Hanson RS, Hanson TE. 1996 Methanotrophic bacteria. Microbiol. Rev. 60: 439-471. |
8 | Haynes CA, Gonzalez R. 2014. Rethinking biological activation of methane and conversion to liquid fuels. Nat. Chem. Biol. 10: 331-339. DOI ScienceOn |
9 | Hwang IY, Lee SH, Choi YS, Park SJ, Na JG, Chang IS, et al. 2014. Biocatalytic conversion of methane to methanol as a key step for development of methane-based biorefineries. J. Microbiol. Biotechnol. 24: 1597-1605. DOI ScienceOn |
10 | Joergensen L, Degn H. 1987. Growth rate and methane affinity of a turbidostatic and oxystatic continuous culture of Methylococcus capsulatus (Bath). Biotechnol. Lett. 9: 71-76. DOI |
11 | Lieberman RL, Rosenzweig AC. 2004. Biological methane oxidation: regulation, biochemistry, and active site structure of particulate methane monooxygenase. Crit. Rev. Biochem. Mol. Biol. 39: 147-164. DOI ScienceOn |
12 | Mehta PK, Mishra S, Ghose TK. 1987. Met anol accumulation by resting cells of Methylosinus trichosporium. J. Gen. Appl. Microbiol. 33: 221-229. DOI |
13 | Nguyen HH, Shiemke AK, Jacobs SJ, Hales BJ, Lidstrom ME, Chan SI. 1994. The nature of th e copper ions in th e membranes containing the particulate methane monooxygenase from Methylococcus capsulatus (Bath). J. Biol. Chem. 269: 14995-15005. |
14 | Prior SD, Dalton H. 1985. The effect of copper ions on membrane content and methane monooxygenase activity in methanol-grown cells of Methylococcus capsulatus (Bath). J. Gen. Microbiol. 131: 155-163. |
15 | Nielsen AK, Gerdes K, Degn H, Colin MJ. 1996. Regulation of bacterial methane oxidation: transcription of the soluble methane mono-oxygenase operon of Methylococcus capsulatus (Bath) is repressed by copper ions. Microbiology 142: 1289-1296. DOI ScienceOn |
16 | Park D, Lee J. 2013. Biological conversion of methane to methanol. Kor. J. Chem. Eng. 30: 977-987. DOI ScienceOn |
17 | Periana RA, Taube DJ, Evitt ER, Loffler DG, Wentrcek PR, Voss G, Masuda T. 1993. A mercury-catalyzed, high-yield system for the oxidation of methane to methanol. Science 259: 340-343. DOI ScienceOn |
18 | Spath PL, Dayton DC. 2003. Preliminary screening - technical and economic assessment of synthesis gas to fuels and chemicals with emphasis on the potential for biomassderived syngas. NREL Golden CO. No. NREL/TP-510-34929. |
19 | Burrows KJ, Cornish A, Scott D, Higgins IJ. 1984. Substrate specificities of the soluble and particulate methane monooxygenases of Methylosinus trichosporium OB3b. J. Gen. Microbiol. 130: 3327-3333. |
20 | Anthony C. 1986. Bacterial oxidation of methane and methanol. Adv. Microb. Physiol. 27: 113-210. DOI |
21 | Burnham A, Han J, Clark CE, Wang M, Dunn JB, Palou-Rivera I. 2011. Life-cycle greenhouse gas emissions of shale gas, natural gas, coal, and etroleum. Environ. Sci. Technol. 46: 619-627. DOI ScienceOn |
22 | Casey PS, McAllister T, Foger K. 1994. Selective oxidation of methane to methanol at high pressures. Ind. Eng. Chem. Res. 33: 1120-1125. DOI ScienceOn |
23 | Takeguchi M, Furuto T, Sugimori D, Okura I. 1997. Optimization of methanol biosynthesis by Methylosinus trichosporium OB3b: an approach to improve methanol accumulation. Appl. Biochem. Biotechnol. 68: 143-152. DOI ScienceOn |
24 | Stafford GP, Scanlan J, McDonald IR, Murrell JC. 2003. rpoN, mmoR and mmoG, genes involved in regulating the expression of soluble methane monooxygenase in Methylosinus trichosporium OB3b. Microbiology 149: 1771-1784. DOI ScienceOn |
25 | Stanley SH, Prior SD, Leak DJ, Dalton H. 1983. Copper stress underlies the fundamental change in intracellular location of methane mono-oxygenase in methane-oxidizing organisms: studies in batch and continuous cultures. Biotechnol. Lett. 5: 487-492. DOI |
26 | Sugimori D, Takeguchi M, Okura I. 1995. Biocatalytic methanol production from methane with Methylosinus trichosporium OB3b: an approach to improve methanol accumulation. Biotechnol. Lett. 17: 783-784. DOI |
27 | Whittenbury R, Phillips KC, Wilkinson JF. 1970. Enrichment, isolation and some properties of methane-utilizing bacteria. J. Gen. Microbiol. 61: 205-218. DOI |