• Title/Summary/Keyword: Metallic film

Search Result 317, Processing Time 0.03 seconds

Structure and Physical Properties of Fe/Si Multiayered Films with Very Thin Sublayers

  • Baek, J.Y;Y.V.Kudryavtsev;J.Y.Rhee;Kim, K.W.;Y.P.Le
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.173-173
    • /
    • 2000
  • Multilayered films (MLF) consisting of transition metals and semiconductors have drawn a great deal of interest because of their unique properties and potential technological applications. Fe/Si MLF are a particular topic of research due to their interesting antiferromagnetic coupling behavior. although a number of experimental works have been done to understand the mechanism of the interlayer coupling in this system, the results are controversial and it is not yet well understood how the formation of an iron silicide in the spacer layers affects the coupling. The interpretation of the coupling data had been hampered by the lack of knowledge about the intermixed iron silicide layer which has been variously hypothesized to be a metallic compound in the B2 structure or a semiconductor in the more complex B20 structure. It is well known that both magneto-optical (MO0 and optical properties of a metal depend strongly on their electronic structure that is also correlated with the atomic and chemical ordering. In order to understand the structure and physical properties of the interfacial regions, Fe/Si multilayers with very thin sublayers were investigated by the MO and optical spectroscopies. The Fe/si MLF were prepared by rf-sputtering onto glass substrates at room temperature with a totall thickness of about 100nm. The thicknesses of Fe and Si sublayers were varied from 0.3 to 0.8 nm. In order to understand the fully intermixed state, the MLF were also annealed at various temperatures. The structure and magnetic properties of Fe/Si MLF were investigated by x-ray diffraction and vibrating sample magnertometer, respectively. The MO and optical properties were measured at toom temperature in the 1.0-4.7 eV energy range. The results were analyzed in connection with the MO and optical properties of bulk and thin-film silicides with various structures and stoichiometries.

  • PDF

Si and Mg doped Hydroxyapatite Film Formation by Plasma Electrolytic Oxidation

  • Park, Seon-Yeong;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.195-195
    • /
    • 2016
  • Titanium and its alloys are widely used as implants in orthopedics, dentistry and cardiology due to their outstanding properties, such as high strength, high level of hemocompatibility and enhanced biocompatibility. Hence, recent works showed that the synthesis of new Ti-based alloys for implant application involves more biocompatible metallic alloying element, such as, Nb, Hf, Zr and Mo. In particular, Nb and Hf are one of the most effective Ti ${\beta}-stabilizer$ and reducing the elastic modulus. Plasma electrolyte oxidation (PEO) is known as excellent method in the biocompatibility of biomaterial due to quickly coating time and controlled coating condition. The anodized oxide layer and diameter modulation of Ti alloys can be obtained function of improvement of cell adhesion. Silicon (Si) and magnesium (Mg) has a beneficial effect on bone. Si in particular has been found to be essential for normal bone and cartilage growth and development. In vitro studies have shown that Mg plays very important roles in essential for normal growth and metabolism of skeletal tissue in vertebrates and can be detected as minor constituents in teeth and bone. The aim of this study is to research Si and Mg doped hydroxyapatite film formation by plasma electrolytic oxidation. Ti-29Nb-xHf (x= 0, 3, 7 and 15wt%, mass fraction) alloys were prepared Ti-29Nb-xHf alloys of containing Hf up from 0 wt% to 15 wt% were melted by using a vacuum furnace. Ti-29Nb-xHf alloys were homogenized for 2 hr at $1050^{\circ}C$. Each alloy was anodized in solution containing typically 0.15 M calcium acetate monohydrate + 0.02 M calcium glycerophosphate at room temperature. A direct current power source was used for the process of anodization. Anodized alloys was prepared using 270V~300V anodization voltage at room. A Si and Mg coating was produced by RF-magnetron sputtering system. RF power of 100W was applied to the target for 1h at room temperature. The microstructure, phase and composition of Si and Mg coated oxide surface of Ti-29Nb-xHf alloys were examined by FE-SEM, EDS, and XRD.

  • PDF

A Comparative Study of ITO Glass Ablation Using Femtosecond and Nanosecond Lasers (펨토초 레이저와 나노초 레이저를 이용한 ITO Glass의 어블레이션 비교 연구)

  • Jeon, Jin-Woo;Shin, Young-Gwan;Kim, Hoon-Young;Choi, Wonsuk;Ji, Seok-Young;Kang, Hee-Shin;Ahn, Sanghoon;Chang, Won Seok;Cho, Sung-Hak
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.6
    • /
    • pp.356-360
    • /
    • 2017
  • Indium tin oxide (ITO) provides high electrical conductivity and transparency at visible and near-IR wavelengths. ITO is widely used as a transparent electrode for the fabrication of LCDs, OLEDs, and many kinds of optical applications. It is widely employed for electrodes in various electric and display sectors because of its transparency in the visible range and high conductivity. Therefore, one issue is removing a specific area of a layer of material such as ITO or metallic film on a substrate, without affecting the properties of the substrate. ITO-on-glass removal using a laser is friendlier to the environment than traditional methods. In this study, ablation of ITO film on glass using a femtosecond-laser micromachining system (wavelength 1026 nm, pulse duration 150 fs) and a nanosecond-laser micromachining system (wavelength 1027 nm, pulse duration 5 ns) are described, compared, and analyzed.

Fabrication of the Wafer Level Packaged LED Integrated Temperature Sensor and Configuration of The Compensation System for The LED's Optical Properties (온도센서가 집적된 WLP LED의 제작과 이를 통한 광 특성 보상 시스템의 구현)

  • Kang, In-Ku;Kim, Jin-Kwan;Lee, Hee-Chul
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.49 no.7
    • /
    • pp.1-9
    • /
    • 2012
  • In this paper, resistance temperature detector (RTD) integrated into the LED package is proposed in order to solve the temperature dependence of LED's optical properties. To measure the package temperature in real time, the RTD type temperature sensor having excellent accuracy and linearity between temperature change and resistance change was adopted. A stable metallic film is required for long term reliability and stability of the RTD type temperature sensor. Therefore, deposition and annealing condition for the film were determined. Based on the determined condition, the RTD type temperature sensor with the sensitivity of about $1.560{\Omega}/^{\circ}C$ was fabricated inside the LED package. In order to configurate the LED package system keeping the constant brightness regardless of the temperature, additional conversion circuit and control circuit boards were fabricated and added to the fabricated LED package. The proposed system was designed to compensate the light intensity caused by temperature change using the variable duty rate of driving current. As a result, the duty rate of PWM signal which is the output signal of the configurated system was changed with the temperature change, and the duty rate was similarly varied with the target duty rate. Consequently, it was focused the fabricated RTD can be used for compensating the optical properties of LED and the LED package which exhibits constant brightness regardless of the temperature change.

Formation of MOCVD TiN from a New Precursor (새로운 증착원으로 형성된 MOCVD TiN에 관한 연구)

  • Choe, Jeong-Hwan;Lee, Jae-Gap;Kim, Ji-Yong;Lee, Eun-Gu;Hong, Hae-Nam;Sin, Hyeon-Guk
    • Korean Journal of Materials Research
    • /
    • v.9 no.3
    • /
    • pp.244-250
    • /
    • 1999
  • MOCVD TiN films were prepared from a new TiN precursor, tetrakis(etylmethylamino)titanium (TEMAT) and ammonia. Deposition of TiN films from a single precursor, TEMA T yielded the growth rates of $70 to 1050\AA$/min, depending on the deposition temperature. Furthermore, the excellent bottom coverage of -90% over $0.35\mu\textrm{m}$ contacts was obtained at $275^{\circ}C$. The addition of ammonia to TEMA T lowered the resistivity of as- deposited TiN film to ~ $800\mu\omega-cm$ from $3500~6000\mu\omega-cm$ and improved the stability of TiN film in air. Examination of the films by Auger electron spectroscopy(AES) showed that the oxygen and carbon contents decreased with the addition of ammonia. However, increasing ammonia flow rate decreased the bottom coverage of TiN films over $0.5\mu\textrm{m}$ contacts, probably due to the high sticking coefficient of intermediate species produced from the gas phase reaction of TEMA T and ammonia. Based on the byproduct gases detected by the quadrupole mass spectrometer (QMS), the transammination reaction was proposed to be responsible for TiN deposition. In addition, XPS analysis revealed that the carbon in the films made from TEMA T and ammonia was metallic carbon, suggesting that $\beta$-hydrogen activation process occurs competitively with the transammination reaction.

  • PDF

A Study on the Shaped-Beam Antenna with High Gain Characteristic (고이득 특성을 갖는 성형 빔 안테나에 대한 연구)

  • Eom, Soon-Young;Yun, Je-Hoon;Jeon, Soon-Ick;Kim, Chang-Joo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.1 s.116
    • /
    • pp.62-75
    • /
    • 2007
  • This paper describes a shaped-beam antenna for increasing the antenna gain of a radiating element. The proposed antenna structure is composed of an exciting element and a multi-layered disk array structure(MDAS). The stack micro-strip patch elements were used as the exciter for effectively radiating the electromagnetic power to the MDAS over the broadband, and finite metallic disk array elements - which give the role of a director for shaping the antenna beam with the high gain - were finitely and periodically layered onto it. The efficient power coupling between the exciter and the MDAS should be carried out in such a way that the proposed antenna has a high gain characteristic. The design parameters of the exciter and the MDAS should be optimized together to meet the required specifications to meet the required specifications. In this study, a shaped-beam antenna with high gain was optimally designed under the operating conditions with a linear polarization and the frequency band of $9.6{\sim}10.4\;GHz$. Two methods constructed using thin dielectric film and dielectric foam materials respectively were also proposed in order to implement the MBAS of the antenna. In particular, through the computer simulation process, the electrical performance variations of the antenna with the MDAS realized by the thin dielectric film materials were shown according to the number of disk array elements in the stack layer. Two kinds of antenna breadboard with the MDAS realized with the thin dielectric film and dielectric foam materials were fabricated, but experimentation was conducted only on the antenna breadboard(Type 1) with the MDAS realized with the thin dielectric film materials according to the number of disk array elements in the stack layer in order to compare it with the electrical performance variations obtained during the simulation. The measured antenna gain performance was found to be in good agreement with the simulated one, and showed the periodicity of the antenna gain variations according to the stack layer number of the disk array elements. The electrical performance of the Type 1 antenna was measured at the center frequency of 10 GHz. As the disk away elements became the ten stacks, a maximum antenna gain of 15.65 dBi was obtained, and the measured return loss was not less than 11.4 dB within the operating band. Therefore, a 5 dB gain improvement of the Type 1 antenna can be obtained by the MDAS that is excited by the stack microstrip patch elements. As the disk array elements became the twelve stacks, the antenna gain of the Type 1 was measured to be 1.35 dB more than the antenna gain of the Type 2 by the outer dielectric ring effect, and the 3 dB beam widths measured from the two antenna breadboards were about $28^{\circ}$ and $36^{\circ}$ respectively.

Electrochemical Characteristics of Cu3Si as Negative Electrode for Lithium Secondary Batteries at Elevated Temperatures (리튬 이차전지 음극용 Cu3Si의 고온에서의 전기화학적 특성)

  • Kwon, Ji-Y.;Ryu, Ji-Heon;Kim, Jun-Ho;Chae, Oh-B.;Oh, Seung-M.
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.2
    • /
    • pp.116-122
    • /
    • 2010
  • A $Cu_3Si$ film electrode is obtained by Si deposition on a Cu foil using DC magnetron sputtering, which is followed by annealing at $800^{\circ}C$ for 10 h. The Si component in $Cu_3Si$ is inactive for lithiation at ambient temperature. The linear sweep thermammetry (LSTA) and galvano-static charge/discharge cycling, however, consistently illustrate that $Cu_3Si$ becomes active for the conversion-type lithiation reaction at elevated temperatures (> $85^{\circ}C$). The $Cu_3Si$ electrode that is short-circuited with Li metal for one week is converted to a mixture of $Li_{21}Si_5$ and metallic Cu, implying that the Li-Si alloy phase generated at 0.0 V (vs. Li/$Li^+$) at the quasi-equilibrium condition is the most Li-rich $Li_{21}Si_5$. However, the lithiation is not extended to this phase in the constant-current charging (transient or dynamic condition). Upon de-lithiation, the metallic Cu and Si react to be restored back to $Cu_3Si$. The $Cu_3Si$ electrode shows a better cycle performance than an amorphous Si electrode at $120^{\circ}C$, which can be ascribed to the favorable roles provided by the Cu component in $Cu_3Si$. The inactive element (Cu) plays as a buffer against the volume change of Si component, which can minimize the electrode failure by suppressing the detachment of Si from the Cu substrate.

The Study of Near-field Scanning Microwave Microscope for the Nondestructive Detection System (비파괴 측정을 위한 근접장 마이크로파 현미경 연구)

  • Kim, Joo-Young;Kim, Song-Hui;Yoo, Hyun-Jun;Yang, Jong-Il;Yoo, Hyung-Keun;Yu, Kyong-Son;Kim, Seung-Wan;Lee, Kie-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.5
    • /
    • pp.508-517
    • /
    • 2004
  • We described a near-field scanning microwave microscope which uses a high-quality dielectric resonator with a tunable screw. The operating frequency is f=4.5 5GHz. The probe tip is mounted in a cylindrical resonant cavity coupled to a dielectric resonator We developed a hybrid tip combining a reduced length of the tapered part with a small apex. In order to understand the function of the probe, we fabricated three different tips using a conventional chemical etching technique and observed three different NSMM images for patterened Cr films on glass substrates. We measured the reflection coefficient of different metal thin film samples with the same thickness of 300m and compared with theoretical impedance respectly. By tuning the tunable screw coming through the top cover, we could improve sensitivity, signal-to-noise ratio, and spatial resolution to better than $1{\mu}m$. To demonstrate the ability of local microwave characterization, the surface resistance of metallic thin films has been mapped.

The Study of Surface Plasmonic Bands Using Block Copolymer Nanopatterns (블록공중합체 나노패턴을 이용한 표면 플라즈몬 연구)

  • Yoo, Seung Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.88-93
    • /
    • 2017
  • It is important to develop a simple method oftuning localized surface plasmon resonance(LSPR) properties, due to their numerous applications. In addition, the careful examination of the shape, size and combination of metal nanoparticles is useful for understanding the relation between the LSPR properties and metal nanostructures. This article describes the dependence of theLSPR properties on the arrays of metal nanoparticles obtained from a block copolymer(BCP) micellar thin film. Firstly, two different Au nanostructures, having a dot and ring shape, were fabricated using conventional block copolymer micelle lithography. Then, Ag was plated on the Au nanostructures through the silver mirror reaction technique to obtain Au/Ag bimetallic nanostructures. During the production of these metallic nanostructures, the processing factors, such as the pre-treatment by ethanol, silver mirror reaction time and removal or not of the BCP, were varied. Once the Au nanoparticles were synthesized, Ag was properly plated on the Au, providing two distinguishable characteristic plasmonic bands at around 525nm for Au and around 420nm for Ag, as confirmed bythe UV-vis measurements. However, when a small amount of Au seed nanoparticles, which accelerate the Ag plating speed,was formed by usinga block copolymer with a relatively highmolecular weight, all of the Au surfaces were fully covered by Ag during the silver mirror reaction, showing only the characteristic peak for Ag at around 420nm. The Ag plating technique on Au nanoparticles pre-synthesized from a block copolymer is useful to study the LSPR properties carefully.

Electrical Properties of Transparent Conductive Films of Single-Walled Carbon Nanotubes with Their Purities

  • Lee, Seung-Ho;Goak, Jeung-Choon;Lee, Chung-Yeol;Lee, Nae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.56-56
    • /
    • 2010
  • Single-walled carbon nanotubes (SWCNTs) have attracted much attention as a promising material for transparent conducting films (TCFs), due to their superior electrical conductivity, high mechanical strength, and complete flexibility as well as their one-dimensional morphological features of extremely high length-to-diameter ratios. This study investigated three kinds of SWCNTs with different purities: as-produced SWCNTs (AP-SWCNTs), thermally purified SWCNTs (TH-SWCNTs), thermally and acid purified SWCNTs (TA-SWCNTs). The purity of each SWCNT sample was assessed by considering absorption peaks in the semiconducting ($S_{22}$) and metallic ($M_{11}$) tubes with UV-Vis NIR spectroscopy and a metal content with thermogravimetric analysis (TGA). The purity increased as proceeding the purification stages from the AP-SWCNTs through the thermal purification to the acid purification. The samples containing different contents of SWCNTs were dispersed in water using sodium dodecyl benzensulfate (SDBS). Aqueous suspensions of different purities of SWCNTs were prepared to have similar absorbances in UV-Vis absorption measurements so that one can make the TCFs possess similar optical transmittances irrespective of the SWCNT purity. Transparent conductive SWCNT networks were formed by spraying an SWCNT suspension onto a poly(ethyleneterephthalate) (PET) substrate. As expected, the TCFs fabricated with AP-SWCNTs showed very high sheet resistances. Interestingly, the TH-SWCNTs gave lower sheet resistances to the TFCs than the TA-SWCNTs although the latter was of higher purity in the SWCNT content than the former. The TA-SWCNTs would be shortened in length and be more bundled by the acid purification, relative to the TH-SWCNTs. For both purified (TH, TA) samples, the subsequent nitric acid ($HNO_3$) treatment greatly lowered the sheet resistances of the TCFs, but almost eliminated the difference of sheet resistances between them. This seems to be because the electrical conductivity increased not only due to further removal of surfactants but also due to p-type doping upon the acid treatment. The doping effect was likely to overwhelm the effect of surfactant removal. Although the nitric acid treatment resulted in the similar. electrical properties to the two samples, the TCFs of TH-SWCNTs showed much lower sheet resistances than those of the TA-SWCNTs prior to the acid treatment.

  • PDF