Browse > Article
http://dx.doi.org/10.5229/JKES.2010.13.2.116

Electrochemical Characteristics of Cu3Si as Negative Electrode for Lithium Secondary Batteries at Elevated Temperatures  

Kwon, Ji-Y. (Department of Chemical and Biological Engineering, and Research Center for Energy Conversion & Storage, Seoul National University)
Ryu, Ji-Heon (Graduate School of Knowledge-Based Technology and Energy, Korea Polytechnic University)
Kim, Jun-Ho (Department of Chemical and Biological Engineering, and Research Center for Energy Conversion & Storage, Seoul National University)
Chae, Oh-B. (Department of Chemical and Biological Engineering, and Research Center for Energy Conversion & Storage, Seoul National University)
Oh, Seung-M. (Department of Chemical and Biological Engineering, and Research Center for Energy Conversion & Storage, Seoul National University)
Publication Information
Journal of the Korean Electrochemical Society / v.13, no.2, 2010 , pp. 116-122 More about this Journal
Abstract
A $Cu_3Si$ film electrode is obtained by Si deposition on a Cu foil using DC magnetron sputtering, which is followed by annealing at $800^{\circ}C$ for 10 h. The Si component in $Cu_3Si$ is inactive for lithiation at ambient temperature. The linear sweep thermammetry (LSTA) and galvano-static charge/discharge cycling, however, consistently illustrate that $Cu_3Si$ becomes active for the conversion-type lithiation reaction at elevated temperatures (> $85^{\circ}C$). The $Cu_3Si$ electrode that is short-circuited with Li metal for one week is converted to a mixture of $Li_{21}Si_5$ and metallic Cu, implying that the Li-Si alloy phase generated at 0.0 V (vs. Li/$Li^+$) at the quasi-equilibrium condition is the most Li-rich $Li_{21}Si_5$. However, the lithiation is not extended to this phase in the constant-current charging (transient or dynamic condition). Upon de-lithiation, the metallic Cu and Si react to be restored back to $Cu_3Si$. The $Cu_3Si$ electrode shows a better cycle performance than an amorphous Si electrode at $120^{\circ}C$, which can be ascribed to the favorable roles provided by the Cu component in $Cu_3Si$. The inactive element (Cu) plays as a buffer against the volume change of Si component, which can minimize the electrode failure by suppressing the detachment of Si from the Cu substrate.
Keywords
Lithium secondary batteries; Negative electrode; Li-Si alloys; $Cu_3Si$; Conversion reaction;
Citations & Related Records
연도 인용수 순위
  • Reference
1 G. X. Wang, L. Sun, D. H. Bradhurst, S. Zhong, S. X. Dou, and H. K. Liu, ‘Nanocrystalline NiSi alloy as an anode material for lithium-ion batteries’ J. Alloy Compd., 306, 249 (2000).   DOI
2 G. X. Wang, L. Sun, D. H. Bradhurst, S. Zhong, S. X. Dou, and H. K. Liu, ‘Innovative nanosize lithium storage alloys with silica as active centre’ J. Power Sources, 88, 278 (2000).   DOI
3 H.-Y. Lee and S.-M. Lee, ‘Graphite-FeSi alloy composites as anode materials for rechargeable lithium batteries’ J. Power Sources, 112, 649 (2002).   DOI
4 J. Wolfenstine, S. Campos, D. Foster, J. Read, and W. K. Behl, ‘Nano-scale $Cu_6Sn_5$ anodes’ J. Power Source, 109, 230 (2002).   DOI
5 W. Pu, X. He, J. Ren, C. Wan, and C. Jiang, ‘Electrodeposition of Sn-Cu alloy anodes for lithium batteries’ Electrochim. Acta, 50, 4140 (2005).   DOI
6 J. W. Kim, J. H. Ryu, K. T. Lee, and S. M. Oh, ‘Improvement of silicon powder negative electrodes by copper electroless deposition for lithium secondary batteries’ J. Power Sources, 147, 227 (2005).   DOI
7 B.-C. Kim, H. Uono, T. Satou, T. Fuse, T. Ishihara, M. Ue, and M. Senna, ‘Cyclic Properties of Si-Cu/Carbon Nanocomposite Anodes for Li-Ion Secondary Batteries’ Journal of The Electrochemical Society, 152, A523 (2005).   DOI
8 R. R. Chromik, W. K. Neils, and E. J. Cotts, ‘Thermodynamic and kinetic study of solid state reactions in the Cu-Si system’ J. Appl. Phys., 86, 4273 (1999).   DOI
9 L. Stolt and F. M. D Heurle, ‘The formation of $Cu_3Si$:Marker experiments’ Thin Solid Films, 189, 269 (1990).   DOI
10 J.-H. Kim, H. Kim, and H.-J. Sohn, ‘Addition of Cu for carbon coated Si-based composites as anode materials for lithium-ion batteries’ Electrochem. Commun., 7, 557 (2005).   DOI
11 Y. S. Jung, K. T. Lee, J. H. Kim, J. Y. Kwon, and S. M. Oh, ‘Thermo-electrochemical Activation of an In-Cu Intermetallic Electrode for the Anode in Lithium Secondary Batteries’ Adv. Funct. Mater., 18, 3010 (2008).   DOI
12 R. Nesper, H. G. von Schnering, ‘$Li_{21}Si_5$, a Zintl phase as well as a Hume-Rothery phase’ Journal of Solid State Chemistry, 70, 48 (1987).   DOI
13 Y. Wang and J. Dahn, ‘Phase Changes in Electrochemically Lithiated Silicon at Elevated Temperature’ Journal of The Electrochemical Society, 153, A2314 (2006).   DOI
14 J. Wolfenstine, ‘$CaSi_2$ as an anode for lithium-ion batteries’ J. Power Sources, 124, 241 (2003).   DOI
15 M.-S. Park, Y.-J. Lee, S. Rajendran, M.-S. Song, H.-S. Kim, and J.-Y. Lee, ‘Electrochemical properties of Si/Ni alloygraphite composite as an anode material for Li-ion batteries’ Electrochimica Acta, 50, 5561 (2005).   DOI
16 K. D. Kepler, J. T. Vaughey, and M. M. Thackeray, ‘$Li_xCu_6Sn_5$ (0 < x < 13) : An Intermetallic Insertion Electrode for Rechargeable Lithium Batteries’ Electrochem. Solid-state Lett., 2, 307 (1999).   DOI
17 G. T. Burstein and J. J. Moloney, ‘Cyclic thermammetry’ Electrochemistry Communications, 6, 1037 (2004).   DOI
18 J. Y. Kwon, J. H. Ryu, and S. M. Oh, ‘Performance of electrochemically generated $Li_{21}Si_5$ phase for lithium-ion batteries’ Electrochimica Acta, In Press.
19 V. Baranchugov, E. Markevich, E. Pollak, G. Salitra, and D. Aurbach, ‘Amorphous silicon thin films as a high capacity anodes for Li-ion batteries in ionic liquid electrolytes’ Electrochem. Commun., 9, 796 (2007).   DOI