• Title/Summary/Keyword: Metal thin film

Search Result 1,244, Processing Time 0.034 seconds

Characteristics of metal thin-film pressure sensors by on silicon thin-film mer (실리콘 박막 멤브레인상에 제작된 금속박막형 압력센서의 특성)

  • Choi, Sung-Kyu;Nam, Hyo-Duk;Chung, Gwiy-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1372-1374
    • /
    • 2001
  • This paper describes fabrication and characteristics of metal thin-film pressure sensor for working at high temperature. The proposed pressure sensor consists of a chrom thin-film, patterned on a Wheatstone bridge configuration, sputter-deposited onto thermally oxidized Si membranes with an aluminium interconnection layer. The fabricated pressure sensor presents a low temperature coefficient of resistance, high-sensitivity, low non-linearity and excellent temperature stability. The sensitivity is 1.097 $\sim$ 1.21 mV/V kgf/$cm^2$ in the temperature range of 25 $\sim$ $200^{\circ}C$ and the maximum non-linearity is 0.43 %FS.

  • PDF

Effect of Solution Compositions on Properties of Ni-Fe Nano Thin Film and Wire Made by Electrodeposition Method (Electrodeposition법으로 제조한 Ni-Fe 나노박막 및 나노선의 특성에 미치는 용액 조성의 영향)

  • Koo, Bon-Keup
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.5
    • /
    • pp.243-247
    • /
    • 2010
  • The micro Vickers hardness and internal stress of Ni-Fe metal thin film synthesized by electrodeposition method at $25^{\circ}C$ were studied as a function of bath composition, and surface microstructure and atomic compositions of thin films were investigated by SEM and EDS. And the shape change of $200\;{\AA}$ Ni-Fe nanowires made using anodic aluminum oxide(AAO) templates by electrodeposition method were observed by SEM as a function of ultrasonic treatment time and bath composition. The Fe deposition contents on the substrate non-linearly increased with Fe ion concentration over total metal ion concentration. In case of low Fe contents film, the grain size is smaller and denser than high Fe contents deposited films, and the micro Vickers hardness increased with Fe contents of electrodeposited films. These results affected the shape change of nanowire after ultrasonic treatments.

Dry Etch Characteristics of TiN Thin Film for Metal Gate Electrode (Metal 게이트 전극을 위한 TiN 박막의 건식 식각 특성)

  • Um, Doo-Seung;Woo, Jong-Chang;Park, Jung-Soo;Kim, Chang-Il
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.4
    • /
    • pp.169-172
    • /
    • 2009
  • We investigated the dry-etching mechanism of the TiN thin film using a $Cl_2$/Ar inductively coupled plasma system. To understand the effect of the $Cl_2$/Ar gas mixing ratio, we etched the TiN thin film by varying $Cl_2$/Ar gas mixing ratio. When the gas mixing ratio was 100% $Cl_2$, the highest etch rate was obtained. The chemical reaction on the surface was investigated with X-ray photoelectron spectroscopy (XPS). Scanning electron microscopy (SEM) was used to examine etched profiles of the TiN thin film.

NbTi Thin Film by RF Sputtering Method (RF Sputtering법에 의한 NbTi박막 제조연구)

  • Kim, Bong-Seo;Woo, Byung-Chul;Ha, Dong-Woo;Byun, Woo-Bong;Lee, Hee-Woong
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.212-214
    • /
    • 1994
  • At recent time, superconducting technology makes it possible to develop various devices using strong magnetic fields. As increasing with devices using high magnetic fields, magnetic shielding technology is essential in order to get high efficiency. Therefore it is necessary to establish production method and clear characteristics of suitable shielding materials. Usually, ferromagnetic metal has been used for shielding of high magnetic fields up to the present time. Instead of heavy ferromagnetic metal, we can acquire better upgraded shielding system by using of very light superconducting thin film that has a perfect diamagnetism. We would like to study basic characteristics of NbTi thin film produced by RF sputtering, investigated morphology and crystal structure of NbTi thin film by SEM and XRD, identified superconductivity measuring by critical current.

  • PDF

Encapsulation Method of Flexible OLED Using SiNx and Metal Film (SiNx와 금속막을 이용한 플렉시블 OLED 봉지 방법)

  • Lee, Hyoe Sun;Ju, Sung-Hoo
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.3
    • /
    • pp.99-103
    • /
    • 2014
  • The encapsulation method of flexible organic light emitting devices (OLEDs) was investigated for the structure of ITO / 2-TNATA / NPB / $Alq_3$ : Rubrene (1 vol.%) / $Alq_3$ / LiF / Al / $Alq_3$ / LiF / Al (OLED #1), on which $SiN_x$ thin film was deposited and metal film was attached to protect the damage of OLED from oxygen and moisture. The $SiN_x$ thin film was deposited by plasma enhanced chemical vapor deposition (PECVD) method using $SiH_4$ of 20 sccm and $N_2$ of 15~35 sccm as reactor gases. The optimum $SiN_x$ deposition condition was found to be 20 sccm $SiH_4$ and 20 sccm $N_2$ from the Ca test of the fabricated $SiN_x$ thin film. The life time of OLED #1, OLED #1 / $SiN_x$ 200 nm, OLED #1 / $SiN_x$ 400 nm and OLED #1 / $SiN_x$ 400 nm / metal film was 7, 12, 25, and 45 hours, respectively. In conclusion, it has been shown that the lifetime of OLEDs can be improved more than 6 times by $SiN_x$ film and a metal film encapsulation.

Thin Oxide Functional Films by Metal Alkoxide Method

  • Natalya, Korobova
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.9-16
    • /
    • 2000
  • A survey over the role of sol-gel processing and metal alkoxides in the thin film preparation is given. The basic chemistry of the sol-gel process is complex due to the different reactivities of the network forming and the wide variety of reaction parameters. Despite the important progress in the investigations of the mechanisms of thin film formation, a direct relation of reaction parameters to functional oxide properties is still very difficult.

  • PDF

Fabrication and Electrochemical Characterization of All Solid State Thin Film Micro-Battery by in-situ sputtering (In-situ 스퍼터링을 이용한 마이크로 박막 전지의 제작 및 전지 특성 평가)

  • 전은정;신영화;남상철;조원일;손봉희;윤영수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.159-162
    • /
    • 1999
  • All solid state thin film micro-batteries consisting of lithium metal anode, an amorphous LiPON electrolyte and cathode of vanadium oxide have been fabricated and characterized, which were fabricated with cell structure of Li/LiPON/V$_2$O$\sub$5/Pt. The vanadium oxide thin films were formed by d.c. reactive sputtering on Pt current collector. After deposition of vanadium oxide films, in-situ growths of lithium phosphorus oxynitride film were conducted by r.f. sputtering of Li$_3$PO$_4$ target in mixture gas of N$_2$ and O$_2$. The pure metal lithium film was deposited by thermal evaporation on thin film LiPON electrolyte. The cell capacity was about 45${\mu}$Ah/$\textrm{cm}^2$ $\mu\textrm{m}$ after 200 cycle. No appreciable degradation of the cell capacity could be observed after 50 cycles .

  • PDF

Compositional Study of Surface, Film, and Interface of Photoresist-Free Patternable SnO2 Thin Film on Si Substrate Prepared by Photochemical Metal-Organic Deposition

  • Choi, Yong-June;Kang, Kyung-Mun;Park, Hyung-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.1
    • /
    • pp.13-17
    • /
    • 2014
  • The direct-patternable $SnO_2$ thin film was successfully fabricated by photochemical metal-organic deposition. The composition and chemical bonding state of $SnO_2$ thin film were analyzed by using X-ray photoelectron spectroscopy (XPS) from the surface to the interface with Si substrate. XPS depth profiling analysis allowed the determination of the atomic composition in $SnO_2$ film as a function of depth through the evolution of four elements of C 1s, Si 2p, Sn 3d, and O 1s core level peaks. At the top surface, nearly stoichiometric $SnO_2$ composition (O/Sn ratio is 1.92.) was observed due to surface oxidation but deficiency of oxygen was increased to the interface of patterned $SnO_2/Si$ substrate where the O/Sn ratio was about 1.73~1.75 at the films. This O deficient state of the film may act as an n-type semiconductor and allow $SnO_2$ to be applied as a transparent electrode in optoelectronic applications.

In-Situ Electrical Resistance and Microstructure for Ultra-Thin Metal Film Coated by Magnetron Sputtering (마그네트론 스파터시 금속 극박막의 실시간 전기저항과 미세구조 변화)

  • Kwon, Na-Hyun;Kim, Hoi-Bong;Hwang, Bin;Bae, Dong-Su;Cho, Young-Rae
    • Korean Journal of Materials Research
    • /
    • v.21 no.3
    • /
    • pp.174-179
    • /
    • 2011
  • Ultra-thin aluminum (Al) and tin (Sn) films were grown by dc magnetron sputtering on a glass substrate. The electrical resistance R of films was measured in-situ method during the film growth. Also transmission electron microscopy (TEM) study was carried out to observe the microstructure of the films. In the ultra-thin film study, an exact determination of a coalescence thickness and a continuous film thickness is very important. Therefore, we tried to measure the minimum thickness for continuous film (dmin) by means of a graphical method using a number of different y-values as a function of film thickness. The raw date obtained in this study provides a graph of in-situ resistance of metal film as a function of film thickness. For the Al film, there occurs a maximum value in a graph of in-situ electrical resistance versus film thickness. Using the results in this study, we could define clearly the minimum thickness for continuous film where the position of minimum values in the graph when we put the value of Rd3 to y-axis and the film thickness to x-axis. The measured values for the minimum thickness for continuous film are 21 nm and 16 nm for sputtered Al and Sn films, respectively. The new method for defining the minimum thickness for continuous film in this study can be utilized in a basic data when we design an ultra-thin film for the metallization application in nano-scale devices.

Effects of transient thermo reflectance on the thermal responses of metal thin film exposed to ultrashort laser heating (극초단 펄스레이저 광이 입사된 금속박막의 열적반응 중 비정상반사율의 영향)

  • 박승호;국정진
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.4
    • /
    • pp.528-536
    • /
    • 1999
  • This work studies the effects of transient reflectance on the thermal responses of a metal(gold) thin-film during ultrashort laser heating. The heating process is calculated using the conventional conduction model (parabolic one-step: POS), parabolic two-step model (PTS) with and without variable properties, hyperbolic two-step model (HTS). Results from the HTS model are very similar to those from the PTS model, since the laser heating time in this study is greater than the electron relaxation time. PTS model with variable properties, however, results in totally different temperature profiles compared to those from POS models or calculation with constant properties. Transient reflectances are estimated from electron temperature distributions and based on the linear relationship between the electron temperature and complex dielectric constants. Reflectance of the front surface can be changed with respect to dielectric constants, while those of the rear surface remain unchanged.

  • PDF