Browse > Article
http://dx.doi.org/10.3740/MRSK.2011.21.3.174

In-Situ Electrical Resistance and Microstructure for Ultra-Thin Metal Film Coated by Magnetron Sputtering  

Kwon, Na-Hyun (Dept. of Materials Science & Engineering, Pusan National University)
Kim, Hoi-Bong (Dept. of Materials Science & Engineering, Pusan National University)
Hwang, Bin (Dept. of Materials Science & Engineering, Pusan National University)
Bae, Dong-Su (Dept. of Advanced Materials Engineering, Dong-Eui University)
Cho, Young-Rae (Dept. of Materials Science & Engineering, Pusan National University)
Publication Information
Korean Journal of Materials Research / v.21, no.3, 2011 , pp. 174-179 More about this Journal
Abstract
Ultra-thin aluminum (Al) and tin (Sn) films were grown by dc magnetron sputtering on a glass substrate. The electrical resistance R of films was measured in-situ method during the film growth. Also transmission electron microscopy (TEM) study was carried out to observe the microstructure of the films. In the ultra-thin film study, an exact determination of a coalescence thickness and a continuous film thickness is very important. Therefore, we tried to measure the minimum thickness for continuous film (dmin) by means of a graphical method using a number of different y-values as a function of film thickness. The raw date obtained in this study provides a graph of in-situ resistance of metal film as a function of film thickness. For the Al film, there occurs a maximum value in a graph of in-situ electrical resistance versus film thickness. Using the results in this study, we could define clearly the minimum thickness for continuous film where the position of minimum values in the graph when we put the value of Rd3 to y-axis and the film thickness to x-axis. The measured values for the minimum thickness for continuous film are 21 nm and 16 nm for sputtered Al and Sn films, respectively. The new method for defining the minimum thickness for continuous film in this study can be utilized in a basic data when we design an ultra-thin film for the metallization application in nano-scale devices.
Keywords
$\underline{in-situ\electrica\resistance}$; ultra-thin film; coalescence thickness; continuous film thickness; film growth;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 K. Schroder and J. Hollander, Thin Solid Films, 458, 322 (2004).   DOI   ScienceOn
2 X. Wang, A. F. Pun, Y. Xin and J. P. Zheng, Thin Solid Films, 510, 82 (2006).   DOI   ScienceOn
3 J. J. Valenzuela-Jauregui, R. Quintero-Gonzalez, J. Hernandez-Torres, A. Mendoza-Galván, R. Ramirez-Bon, Vacuum, 76, 177 (2004).   DOI   ScienceOn
4 D. K. Aswal, N. Joshi, A. K. Debnath, S. K. Gupta, D. Vuillaume and J. V. Yakhmi, Phys. Status Solidi., 203(6), 1254 (2006).   DOI   ScienceOn
5 D. Makarov, R. Pallesche, M. Maret, T. C. Ulbrich, G.Schatz and M. Albrecht, Surf. Sci., 601, 2032 (2007).   DOI   ScienceOn
6 V. M. Trontl, P. Pervan and M. Milun, Surf. Sci., 603, 125 (2009).   DOI   ScienceOn
7 M. C. Salvadori, L. L. Melo, A. R. Vaz, R. S. Wiederkehr, F. S. Teixeira and M. Cattani, Surf. Coating. Tech., 200, 2965 (2006).   DOI   ScienceOn
8 J. S. Agustsson, U. B. Arnalds, A. S. Ingason, K. B. Gylfason, K. Johnsen, S. Olafsson and J. T. Gudmundsson, Appl. Surf. Sci., 254, 7356 (2008).   DOI   ScienceOn
9 I. M. Rycroft and B. L. Evans, Thin Solid Films, 290-291, 283 (1996).   DOI   ScienceOn
10 J. A. Floro, S. J. Hearne, J. A. Hunter, P. Kotula, E. Chason, S. C. Seel and C. V. Thompson, J. Appl. Phys., 89(9), 4886 (2001).   DOI   ScienceOn
11 B. K. Shin, T. I. Lee, K. I. Park, K. J. Ahn and J. M. Myoung, Kor. J. Mater. Res., 20(1), 47 (2010) (in Korean).   DOI   ScienceOn