Browse > Article
http://dx.doi.org/10.5695/JKISE.2010.43.5.243

Effect of Solution Compositions on Properties of Ni-Fe Nano Thin Film and Wire Made by Electrodeposition Method  

Koo, Bon-Keup (Division of Advanced Materials Engineering, Hanbat National University)
Publication Information
Journal of the Korean institute of surface engineering / v.43, no.5, 2010 , pp. 243-247 More about this Journal
Abstract
The micro Vickers hardness and internal stress of Ni-Fe metal thin film synthesized by electrodeposition method at $25^{\circ}C$ were studied as a function of bath composition, and surface microstructure and atomic compositions of thin films were investigated by SEM and EDS. And the shape change of $200\;{\AA}$ Ni-Fe nanowires made using anodic aluminum oxide(AAO) templates by electrodeposition method were observed by SEM as a function of ultrasonic treatment time and bath composition. The Fe deposition contents on the substrate non-linearly increased with Fe ion concentration over total metal ion concentration. In case of low Fe contents film, the grain size is smaller and denser than high Fe contents deposited films, and the micro Vickers hardness increased with Fe contents of electrodeposited films. These results affected the shape change of nanowire after ultrasonic treatments.
Keywords
Electrodeposition; Ni-Fe; Nanowire; Thin film; Stress; Templates; Microhardness; Ultrasonic treatment;
Citations & Related Records
연도 인용수 순위
  • Reference
1 F. E. Atalay, H. Kayaa, S. Atalay, S. Tari, J. Alloys and Com. and Phys., 469 (2009) 458.   DOI
2 V, S, Rania, S, S, Yoon, B, P, Raoc, C, Kim, Mater. Chem. and Phys., 112 (2008) 1133.   DOI
3 S. H. Choe, Y. Y. Charg, K. Y. Hwarg, J. Y. Khim, J. of KoSES, 4 (1999) 85.
4 A. Brenner, Electrodeposition of Alloys, Academic Press, New York, (1963) 84.
5 M. Trau, N. Yao, E. Kim, Y. Xia, G. M. Whitesides, I. A. Aksay, Nature, 390 (1997) 674.   DOI
6 N. V. Myung, L. Lim, J. P. Fluerial, M. Yun, W. West, D. Choi, Nanotechnology, 15 (2004) 833.   DOI
7 S. Saedi, M. Ghorbari, Mater. Chem. Phys., 91 (2005) 417.   DOI
8 N. Zech, E. J. Podlaha, D. Lardolt, J. Electrochem. Soc., 146 (1999) 2886.   DOI
9 J, Vaes, J, Fransaer, J,-P, Celis, J, Electrochem, Soc., 147 (2000) 3718.   DOI
10 B. K. Koo ard B. Y. Yoo, Surf. Coat. Technol., 205 (2010) 740.   DOI
11 Y. Xia, G. M. Whitesides, Angew. Chem. Int. Ed., 37 (1998) 550.   DOI
12 B. T. Hollard, C. Blarford, A. Stein, Science, 281 (1998) 538.   DOI   ScienceOn
13 B. D. Gates, Q. Xu, J. C. Love, D. B. Wolfe, G. M. Whitesides, Annu. Rev. Mater. Res., 34 (2004) 339.   DOI
14 O. D. Velel, T. A. Jede, R. F. Lobo, A. M. Lenhoft, Nature, 389 (1997) 447.
15 S. H. Park, Y. Xia, Chem. Mater., 281 (1998) 538.
16 R. C. Furneaux, W. R. Rigby, A. P. Davidson, Nature, 337 (1989) 147.   DOI
17 C. R. Martin, Acc. Chem. Res., 28 (1995) 61   DOI
18 E. Gomez, E. Pellieer, E. Valles, Electrochem. Comm., 7 (2005) 275.   DOI
19 R. L. White, R. M. H. New, R. F. W. Pease, IEEE Trars. on Magnetics, 33 (1997) 990.   DOI
20 T. Osaka, Electrochim. Acta, 44 (1999) 3885.   DOI
21 E. I. Cooper, C. Bonhote, J. Heidmarn, Y. Hsu, P. Kern, J. W. Lam, M. Ramasubramanian, N. Robertson, L. T. Romankiw, H. Xu, IBM J. Res. Develop., 49 (2005) 103.   DOI
22 F. E. Rasmussen, J. T. Ravnkilde, P. T. Targ, Sensors ard Actuators A, 92 (2001) 242.   DOI
23 S. Guan. B. J. Nelson, J. Electrochem. Soc., 152 (2005) C190.   DOI
24 A. Kohn, M. Eizenberg, Y. Sverdlov, Mater. Sci. Eng. A, 302 (2001) 18.   DOI   ScienceOn