• Title/Summary/Keyword: Metal thin film

Search Result 1,244, Processing Time 0.036 seconds

Improved Uniformity in Resistive Switching Characteristics of GeSe Thin Film by Ag Nanocrystals

  • Park, Ye-Na;Shin, Tae-Jun;Lee, Hyun-Jin;Lee, Ji-Soo;Jeong, Yong-Ki;Ahn, So-Hyun;Lee, On-You;Kim, Jang-Han;Nam, Ki-Hyun;Chung, Hong-Bay
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.237.2-237.2
    • /
    • 2013
  • ReRAM cell, also known as conductive bridging RAM (CBRAM), is a resistive switching memory based on non-volatile formation and dissolution of conductive filament in a solid electrolyte [1,2]. Especially, Chalcogenide-based ReRAM have become a promising candidate due to the simple structure, high density and low power operation than other types of ReRAM but the uniformity of switching parameter is undesirable. It is because diffusion of ions from anode to cathode in solid electrolyte layer is random [3]. That is to say, the formation of conductive filament is not go through the same paths in each switching cycle which is one of the major obstacles for performance improvement of ReRAM devices. Therefore, to control of nonuniform conductive filament formation is a key point to achieve a high performance ReRAM. In this paper, we demonstrated the enhanced repeatable bipolar resistive switching memory characteristics by spreading the Ag nanocrystals (Ag NCs) on amorphous GeSe layer compared to the conventional Ag/GeSe/Pt structure without Ag NCs. The Ag NCs and Ag top electrode act as a metal supply source of our devices. Excellent resistive switching memory characteristics were obtained and improvement of voltage distribution was achieved from the Al/Ag NCs/GeSe/Pt structure. At the same time, a stable DC endurance (>100 cycles) and an excellent data retention (>104 sec) properties was found from the Al/Ag NCs/GeSe/ Pt structured ReRAMs.

  • PDF

Effect of Plasma Treatment Times on the Adhesion of Cu/Ni Thin Film to Polyimide (폴리이미드와 Cu/Ni층과의 계면결합력에 미치는 플라즈마 처리 시간 효과)

  • Woo, Tae-Gyu;Park, Il-Song;Jung, Kwang-Hee;Jeon, Woo-Yong;Seol, Kyeong-Won
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.8
    • /
    • pp.657-663
    • /
    • 2011
  • This study represents the results of the peel strength and surface morphology according to the preprocessing times of polyimide (PI) in a Cu/Ni/PI structure flexible copper clad laminate production process based on the polyimide. Field emission scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy were used to analyze the surface morphology, crystal structure, and interface binding structure of sputtered Ni, Cu, and electrodeposited copper foil layers. The surface roughness of Ni, Cu deposition layers and the crystal structure of electrodeposited Cu layers were varied according to the preprocessing times. In the RF plasma times that were varied by 100-600 seconds in a preprocessing process, the preprocessing applied by about 300-400 seconds showed a homogeneous surface morphology in the metal layers and that also represented high peel strength for the polyimide. Considering the effect of peel strength on plastic deformation, preprocessing times can reasonably be at about 400 seconds.

Atmospheric Pressure Plasma Etching Technology for Forming Circular Holes in Perovskite Semiconductor Materials (페로브스카이트 반도체 물질에 원형 패턴을 형성하기 위한 상압플라즈마 식각 기술)

  • Kim, Moojin
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.2
    • /
    • pp.10-15
    • /
    • 2021
  • In this paper, we formed perovskite (CH3NH3PbI3) thin films on glass with wet coating methods, and used various analytical techniques to discuss film thickness, surface roughness, crystallinity, composition, and optical property. The coated semiconductor material has no defects and is uniform, the surface roughness value is very small, and a high absorption rate has been observed in the visible light area. Next, in order to implement the hole shape in the organic-inorganic layer, Samples in the order of a metal mask with holes at regular intervals, a glass coated with a perovskite material, and a magnet were etched with atmospheric pressure plasma equipment. The shape of the hole formed in the perovskite material was analyzed by changing the time. It can be seen that more etching is performed as the time increases. The sample with the longest processing time was examined in more detail, and it was classified into 7 regions by the difference according to the location of the plasma.

Thermal Atomic Layer Etching of the Thin Films: A Review (열 원자층 식각법을 이용한 박막 재료 식각 연구)

  • Hyeonhui Jo;Seo Hyun Lee;Eun Seo Youn;Ji Eun Seo;Jin Woo Lee;Dong Hoon Han;Seo Ah Nam;Jeong Hwan Han
    • Journal of Powder Materials
    • /
    • v.30 no.1
    • /
    • pp.53-64
    • /
    • 2023
  • Atomic layer etching (ALE) is a promising technique with atomic-level thickness controllability and high selectivity based on self-limiting surface reactions. ALE is performed by sequential exposure of the film surface to reactants, which results in surface modification and release of volatile species. Among the various ALE methods, thermal ALE involves a thermally activated reaction by employing gas species to release the modified surface without using energetic species, such as accelerated ions and neutral beams. In this study, the basic principle and surface reaction mechanisms of thermal ALE?processes, including "fluorination-ligand exchange reaction", "conversion-etch reaction", "conversion-fluorination reaction", "oxidation-fluorination reaction", "oxidation-ligand exchange reaction", and "oxidation-conversion-fluorination reaction" are described. In addition, the reported thermal ALE processes for the removal of various oxides, metals, and nitrides are presented.

The Study of Near-field Scanning Microwave Microscope for the Nondestructive Detection System (비파괴 측정을 위한 근접장 마이크로파 현미경 연구)

  • Kim, Joo-Young;Kim, Song-Hui;Yoo, Hyun-Jun;Yang, Jong-Il;Yoo, Hyung-Keun;Yu, Kyong-Son;Kim, Seung-Wan;Lee, Kie-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.5
    • /
    • pp.508-517
    • /
    • 2004
  • We described a near-field scanning microwave microscope which uses a high-quality dielectric resonator with a tunable screw. The operating frequency is f=4.5 5GHz. The probe tip is mounted in a cylindrical resonant cavity coupled to a dielectric resonator We developed a hybrid tip combining a reduced length of the tapered part with a small apex. In order to understand the function of the probe, we fabricated three different tips using a conventional chemical etching technique and observed three different NSMM images for patterened Cr films on glass substrates. We measured the reflection coefficient of different metal thin film samples with the same thickness of 300m and compared with theoretical impedance respectly. By tuning the tunable screw coming through the top cover, we could improve sensitivity, signal-to-noise ratio, and spatial resolution to better than $1{\mu}m$. To demonstrate the ability of local microwave characterization, the surface resistance of metallic thin films has been mapped.

Magnetic Properties of Cr-Doped Inverse Spinel Fe3O4 Thin Films (Cr 치환된 역스피넬 Fe3O4 박막의 자기적 특성)

  • Lee, Hee-Jung;Choi, Seung-Li;Lee, Jung-Han;Kim, Kwang-Joo;Choi, Dong-Hyeok;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.2
    • /
    • pp.51-54
    • /
    • 2007
  • By substituting Cr in inverse-spinel $Fe_3O_4,\;Cr_xFe_{3-x}O_4$ thin film samples were prepared by sol-gel spin-coating method and their structural electronic, and magnetic properties were analyzed. X-ray diffraction indicates that the lattice constant decrease with increasing Cr composition (x). This result can be explained in terms of occupation of octahedral sites by $Cr^{3+}$ ions with smaller ionic radius than that of $Fe^{3+}$ Vibrating sample magnetometry measurements on the samples at room temperature revealed that saturation magnetization ($M_s$) decrease by Cr substitution, explainable by comparing spin magnetic moment among the related transition-metal ions. A decrease of magnetoresistence effect with x was observed, similar to that of $M_s$. The coercivity of the $Cr_xFe_{3-x}O_4$ films was found to increase with x, attributed to the increase of magnetic anisotropy by the existence of octahedral $Cr^{3+}(d^3)$.

Characteristics of Memory Windows of MFMIS Gate Structures (MFMIS 게이트 구조에서의 메모리 윈도우 특성)

  • Park, Jun-Woong;Kim, Ik-Soo;Shim, Sun-Il;Youm, Min-Soo;Kim, Yong-Tae;Sung, Man-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.319-322
    • /
    • 2003
  • To match the charge induced by the insulators $CeO_2$ with the remanent polarization of ferro electric SBT thin films, areas of Pt/SBT/Pt (MFM) and those of $Pt/CeO_2/Si$ (MIS) capacitors were ind ependently designed. The area $S_M$ of MIS capacitors to the area $S_F$ of MFM capacitors were varied from 1 to 10, 15, and 20. Top electrode Pt and SBT layers were etched with for various area ratios of $S_M\;/\;S_F$. Bottom electrode Pt and $CeO_2$ layers were respectively deposited by do and rf sputtering in-situ process. SBT thin film were prepared by the metal orgnic decomposition (MOD) technique. $Pt(100nm)/SBT(350nm)/Pt(300nm)/CeO_2(40nm)/p-Si$ (MFMIS) gate structures have been fabricated with the various $S_M\;/\;S_F$ ratios using inductively coupled plasma reactive ion etching (ICP-RIE). The leakage current density of MFMIS gate structures were improved to $6.32{\times}10^{-7}\;A/cm^2$ at the applied gate voltage of 10 V. It is shown that in the memory window increase with the area ratio $S_M\;/\;S_F$ of the MFMIS structures and a larger memory window of 3 V can be obtained for a voltage sweep of ${\pm}9\;V$ for MFMIS structures with an area ratio $S_M\;/\;S_F\;=\;6$ than that of 0.9 V of MFS at the same applied voltage. The maximum memory windows of MFMIS structures were 2.28 V, 3.35 V, and 3.7 V with the are a ratios 1, 2, and 6 at the applied gate voltage of 11 V, respectively. It is concluded that ferroelectric gate capacitors of MFMIS are good candidates for nondestructive readout-nonvolatile memories.

  • PDF

The Fabrication of Poly-Si Solar Cells for Low Cost Power Utillity (저가 지상전력을 위한 다결정 실리콘 태양전지 제작)

  • Kim, S.S.;Lim, D.G.;Shim, K.S.;Lee, J.H.;Kim, H.W.;Yi, J.
    • Solar Energy
    • /
    • v.17 no.4
    • /
    • pp.3-11
    • /
    • 1997
  • Because grain boundaries in polycrystalline silicon act as potential barriers and recombination centers for the photo-generated charge carriers, these defects degrade conversion effiency of solar cell. To reduce these effects of grain boundaries, we investigated various influencing factors such as thermal treatment, various grid pattern, selective wet etching for grain boundaries, buried contact metallization along grain boundaries, grid on metallic thin film. Pretreatment above $900^{\circ}C$ in $N_2$ atmosphere, gettering by $POCl_3$ and Al treatment for back surface field contributed to obtain a high quality poly-Si. To prevent carrier losses at the grain boundaries, we carried out surface treatment using Schimmel etchant. This etchant delineated grain boundaries of $10{\mu}m$ depth as well as surface texturing effect. A metal AI diffusion into grain boundaries on rear side reduced back surface recombination effects at grain boundaries. A combination of fine grid with finger spacing of 0.4mm and buried electrode along grain boundaries improved short circuit current density of solar cell. A ultra-thin Chromium layer of 20nm with transmittance of 80% reduced series resistance. This paper focused on the grain boundary effect for terrestrial applications of solar cells with low cost, large area, and high efficiency.

  • PDF

The surface kinetic properties between $BCl_3/Cl_2$/Ar plasma and $Al_2O_3$ thin film

  • Yang, Xue;Kim, Dong-Pyo;Um, Doo-Seung;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.169-169
    • /
    • 2008
  • To keep pace with scaling trends of CMOS technologies, high-k metal oxides are to be introduced. Due to their high permittivity, high-k materials can achieve the required capacitance with stacks of higher physical thickness to reduce the leakage current through the scaled gate oxide, which make it become much more promising materials to instead of $SiO_2$. As further studying on high-k, an understanding of the relation between the etch characteristics of high-k dielectric materials and plasma properties is required for the low damaged removal process to match standard processing procedure. There are some reports on the dry etching of different high-k materials in ICP and ECR plasma with various plasma parameters, such as different gas combinations ($Cl_2$, $Cl_2/BCl_3$, $Cl_2$/Ar, $SF_6$/Ar, and $CH_4/H_2$/Ar etc). Understanding of the complex behavior of particles at surfaces requires detailed knowledge of both macroscopic and microscopic processes that take place; also certain processes depend critically on temperature and gas pressure. The choice of $BCl_3$ as the chemically active gas results from the fact that it is widely used for the etching o the materials covered by the native oxides due to the effective extraction of oxygen in the form of $BCl_xO_y$ compounds. In this study, the surface reactions and the etch rate of $Al_2O_3$ films in $BCl_3/Cl_2$/Ar plasma were investigated in an inductively coupled plasma(ICP) reactor in terms of the gas mixing ratio, RF power, DC bias and chamber pressure. The variations of relative volume densities for the particles were measured with optical emission spectroscopy (OES). The surface imagination was measured by AFM and SEM. The chemical states of film was investigated using X-ray photoelectron spectroscopy (XPS), which confirmed the existence of nonvolatile etch byproducts.

  • PDF

High Quality Nano Structured Single Gas Barrier Layer by Neutral Beam Assisted Sputtering (NBAS) Process

  • Jang, Yun-Sung;Lee, You-Jong;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.251-252
    • /
    • 2012
  • Recently, the growing interest in organic microelectronic devices including OLEDs has led to an increasing amount of research into their many potential applications in the area of flexible electronic devices based on plastic substrates. However, these organic devices require a gas barrier coating to prevent the permeation of water and oxygen because organic materials are highly susceptible to water and oxygen. In particular, high efficiency OLEDs require an extremely low Water Vapor Transition Rate (WVTR) of $1{\times}10^{-6}g/m^2$/day. The Key factor in high quality inorganic gas barrier formation for achieving the very low WVTR required ($1{\times}10^{-6}g/m^2$/day) is the suppression of defect sites and gas diffusion pathways between grain boundaries. In this study, we developed an $Al_2O_3$ nano-crystal structure single gas barrier layer using a Neutral Beam Assisted Sputtering (NBAS) process. The NBAS system is based on the conventional RF magnetron sputtering and neutral beam source. The neutral beam source consists of an electron cyclotron Resonance (ECR) plasma source and metal reflector. The Ar+ ions in the ECR plasma are accelerated in the plasma sheath between the plasma and reflector, which are then neutralized by Auger neutralization. The neutral beam energies were possible to estimate indirectly through previous experiments and binary collision model. The accelerating potential is the sum of the plasma potential and reflector bias. In previous experiments, while adjusting the reflector bias, changes in the plasma density and the plasma potential were not observed. The neutral beam energy is controlled by the metal reflector bias. The NBAS process can continuously change crystalline structures from an amorphous phase to nano-crystal phase of various grain sizes within a single inorganic thin film. These NBAS process effects can lead to the formation of a nano-crystal structure barrier layer which effectively limits gas diffusion through the pathways between grain boundaries. Our results verify the nano-crystal structure of the NBAS processed $Al_2O_3$ single gas barrier layer through dielectric constant measurement, break down field measurement, and TEM analysis. Finally, the WVTR of $Al_2O_3$ nano-crystal structure single gas barrier layer was measured to be under $5{\times}10^{-6}g/m^2$/day therefore we can confirm that NBAS processed $Al_2O_3$ nano-crystal structure single gas barrier layer is suitable for OLED application.

  • PDF