• Title/Summary/Keyword: Metal silicide

Search Result 97, Processing Time 0.024 seconds

Stepwise Ni-silicide Process for Parasitic Resistance Reduction for Silicon/metal Contact Junction

  • Choi, Hoon;Cho, Il-Whan;Hong, Sang-Jeen
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.4
    • /
    • pp.137-142
    • /
    • 2008
  • The parasitic resistance is studied to silicon/metal contact junction for improving device performance and to lower contact/serial resistance silicide in natural sequence. In this paper constructs the stepwise Ni silicide process for parasitic resistance reduction for silicon/metal contact junction. We have investigated multi-step Ni silicide on SiGe substrate with stepwise annealing method as an alternative to compose more thermally reliable Ni silicide layer. Stepwise annealing for silicide formation is exposed to heating environment with $5^{\circ}C/sec$ for 10 seconds and a dwelling for both 10 and 30 seconds, and ramping-up and the dwelling was repeated until the final annealing temperature of $700\;^{\circ}C$ is achieved. Finally a direct comparison for single step and stepwise annealing process is obtained for 20 nm nickel silicide through stepwise annealing is $5.64\;{\Omega}/square$ at $600\;^{\circ}C$, and it is 42 % lower than that of as nickel sputtered. The proposed stepwise annealing for Ni silicidation can provide the least amount of NiSi at the interface of nickel silicide and silicon, and it provides lower resistance, higher thermal-stability, and superior morphology than other thermal treatment.

Co-Deposition법을 이용한 Yb Silicide/Si Contact 및 특성 향상에 관한 연구

  • Gang, Jun-Gu;Na, Se-Gwon;Choe, Ju-Yun;Lee, Seok-Hui;Kim, Hyeong-Seop;Lee, Hu-Jeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.438-439
    • /
    • 2013
  • Microelectronic devices의 접촉저항의 향상을 위해 Metal silicides의 형성 mechanism과 전기적 특성에 대한 연구가 많이 이루어지고 있다. 지난 수십년에 걸쳐, Ti silicide, Co silicide, Ni silicide 등에 대한 개발이 이루어져 왔으나, 계속적인 저저항 접촉 소재에 대한 요구에 의해 최근에는 Rare earth silicide에 관한 연구가 시작되고 있다. Rare-earth silicide는 저온에서 silicides를 형성하고, n-type Si과 낮은 schottky barrier contact (~0.3 eV)를 이룬다. 또한, 비교적 낮은 resistivity와 hexagonal AlB2 crystal structure에 의해 Si과 좋은 lattice match를 가져 Si wafer에서 high quality silicide thin film을 성장시킬 수 있다. Rare earth silicides 중에서 ytterbium silicide는 가장 낮은 electric work function을 갖고 있어 낮은 schottky barrier 응용에서 쓰이고 있다. 이로 인해, n-channel schottky barrier MOSFETs의 source/drain으로써 주목받고 있다. 특히 ytterbium과 molybdenum co-deposition을 하여 증착할 경우 thin film 형성에 있어 안정적인 morphology를 나타낸다. 또한, ytterbium silicide와 마찬가지로 낮은 면저항과 electric work function을 갖는다. 그러나 ytterbium silicide에 molybdenum을 화합물로써 높은 농도로 포함할 경우 높은 schottky barrier를 형성하고 epitaxial growth를 방해하여 silicide film의 quality 저하를 야기할 수 있다. 본 연구에서는 ytterbium과 molybdenum의 co-deposition에 따른 silicide 형성과 전기적 특성 변화에 대한 자세한 분석을 TEM, 4-probe point 등의 다양한 분석 도구를 이용하여 진행하였다. Ytterbium과 molybdenum을 co-deposition하기 위하여 기판으로 $1{\sim}0{\Omega}{\cdot}cm$의 비저항을 갖는 low doped n-type Si (100) bulk wafer를 사용하였다. Native oxide layer를 제거하기 위해 1%의 hydrofluoric (HF) acid solution에 wafer를 세정하였다. 그리고 고진공에서 RF sputtering 법을 이용하여 Ytterbium과 molybdenum을 동시에 증착하였다. RE metal의 경우 oxygen과 높은 반응성을 가지므로 oxidation을 막기 위해 그 위에 capping layer로 100 nm 두께의 TiN을 증착하였다. 증착 후, 진공 분위기에서 rapid thermal anneal(RTA)을 이용하여 $300{\sim}700^{\circ}C$에서 각각 1분간 열처리하여 ytterbium silicides를 형성하였다. 전기적 특성 평가를 위한 sheet resistance 측정은 4-point probe를 사용하였고, Mo doped ytterbium silicide와 Si interface의 atomic scale의 미세 구조를 통한 Mo doped ytterbium silicide의 형성 mechanism 분석을 위하여 trasmission electron microscopy (JEM-2100F)를 이용하였다.

  • PDF

SIMS analysis of the behavior of boron implanted into single silicon during the Ti-silicide formation (Ti-silicide 박막 형성시 규소 기판에 이온 주입된 붕소 거동에 대한 SIMS 분석)

  • Hwang, Yoo Sang;Paek, Su Hyon;Cho, Hyun Choon;Mah, Jae Pyung;Choi, Jin Seog;Kang, Sung Gun
    • Analytical Science and Technology
    • /
    • v.5 no.2
    • /
    • pp.199-202
    • /
    • 1992
  • Ti-silicide was formed by using metal-Ti target and composite target on the silicon substrate that $BF_2$ were introduced into. Implant energies of $BF_2$ were 50keV and 90keV. The behavior of boron was investigated by SIMS. The redistribution of boron occurred during the formation of Ti-silicide by metal-Ti target and the sample implanted at the energy of 50keV showed severe out-diffusion. In the case that Ti-silicide was formed by composite target, there was little redistribution of boron.

  • PDF

Edge Cut Process for Reducing Ni Content at Channel Edge Region in Metal Induced Lateral Crystallization Poly-Si TFTs

  • SEOK, Ki Hwan;Kim, Hyung Yoon;Park, Jae Hyo;Lee, Sol Kyu;Lee, Yong Hee;Joo, Seung Ki
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.2
    • /
    • pp.166-171
    • /
    • 2016
  • Nickel silicide is main issue in Polycrystalline silicon Thin Film Transistor (TFT) which is made by Metal Induced Lateral Crystallization (MILC) method. This Nickel silicide acts as a defect center, and this defect is one of the biggest reason of the high leakage current. In this research, we fabricated polycrystalline TFTs with novel method called Edge Cut (EC). With this new fabrication method, we assumed that nickel silicide at the edge of the channel region is reduced. Electrical properties are measured and trap state density also calculated using Levinson & Proano method.

Synthesis and Applications of Noble Metal and Metal Silicide and Germanide 1-Dimensional Nanostructures

  • Yoon, Ha-Na;Yoo, Young-Dong;Seo, Kwan-Yong;In, June-Ho;Kim, Bong-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.9
    • /
    • pp.2830-2844
    • /
    • 2012
  • This review covers recent developments in our group regarding the synthesis, characterization and applications of single-crystalline one-dimensional nanostructures based on a wide range of material systems including noble metals, metal silicides and metal germanides. For the single-crystalline one-dimensional nanostructures growth, we have employed chemical vapor transport approach without using any catalysts, capping reagents, and templates because of its simplicity and wide applicability. Au, Pd, and Pt nanowires are epitaxially grown on various substrates, in which the nanowires grow from seed crystals by the correlations of the geometry and orientation of seed crystals with those of as-grown nanowires. We also present the synthesis of numerous metal silicide and germanide 1D nanostructures. By simply varying reaction conditions, furthermore, nanowires of metastable phase, such as $Fe_5Si_3$ and $Co_3Si$, and composition tuned cobalt silicides (CoSi, $Co_2Si$, $Co_3Si$) and iron germanides ($Fe_{1.3}Ge$ and $Fe_3Ge$) nanowires are synthesized. Such developments can be utilized as advanced platforms or building blocks for a wide range of applications such as plasmonics, sensings, nanoelectronics, and spintronics.

Silicidation and Thermal Stability of the So/refreactory Metal Bilayer on the Doped Polycrystalline Si Substrate (Co/내열금속/다결정 Si 구조의 실리사이드화와 열적안정성)

  • 권영재;이종무
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.6
    • /
    • pp.604-610
    • /
    • 1999
  • Silicide layer structures and morphology degradation of the surface and interface of the silicide layers for he Co/refractory metal bilayer sputter-deposited on the P-doped polycrystalline Si substrate and subjected to rapid thermal annealing were investigated and compared with those on the single Si substrate. The CoSi-CoSi2 phase transition temperature is lower an morphology degradation of the silcide layer occurs more severely for the Co/refractorymetal bilayer on the P-doped polycrystalline Si substrate than on the single Si substrate. Also the final layer structure and the morphology of the films after silicidation annealing was found to depend strongly upon the interlayer metal. The layer structure after silicidation annealing of Co/Hf/doped-poly Si is Co-Hf alloy/polycrystalline CoSi2/poly Si substrate while that of Co/Nb is polycrystalline CoSi2/NbSi2/polycrystalline CoSi2/poly Si.

  • PDF

A study on Improvement of sub 0.1$\mu\textrm{m}$VLSI CMOS device Ultra Thin Gate Oxide Quality Using Novel STI Structure (STI를 이용한 서브 0.1$\mu\textrm{m}$VLSI CMOS 소자에서의 초박막게이트산화막의 박막개선에 관한 연구)

  • 엄금용;오환술
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.9
    • /
    • pp.729-734
    • /
    • 2000
  • Recently, Very Large Scale Integrated (VLSI) circuit & deep-submicron bulk Complementary Metal Oxide Semiconductor(CMOS) devices require gate electrode materials such as metal-silicide, Titanium-silicide for gate oxides. Many previous authors have researched the improvement sub-micron gate oxide quality. However, few have reported on the electrical quality and reliability on the ultra thin gate oxide. In this paper, at first, I recommand a novel shallow trench isolation structure to suppress the corner metal-oxide semiconductor field-effect transistor(MOSFET) inherent to shallow trench isolation for sub 0.1${\mu}{\textrm}{m}$ gate oxide. Different from using normal LOCOS technology deep-submicron CMOS devices using novel Shallow Trench Isolation(STI) technology have a unique"inverse narrow-channel effects"-when the channel width of the devices is scaled down, their threshold voltage is shrunk instead of increased as for the contribution of the channel edge current to the total channel current as the channel width is reduced. Secondly, Titanium silicide process clarified that fluorine contamination caused by the gate sidewall etching inhibits the silicidation reaction and accelerates agglomeration. To overcome these problems, a novel Two-step Deposited silicide(TDS) process has been developed. The key point of this process is the deposition and subsequent removal of titanium before silicidation. Based on the research, It is found that novel STI structure by the SEM, in addition to thermally stable silicide process was achieved. We also obtained the decrease threshold voltage value of the channel edge. resulting in the better improvement of the narrow channel effect. low sheet resistance and stress, and high threshold voltage. Besides, sheet resistance and stress value, rms(root mean square) by AFM were observed. On the electrical characteristics, low leakage current and trap density at the Si/SiO$_2$were confirmed by the high threshold voltage sub 0.1${\mu}{\textrm}{m}$ gate oxide.

  • PDF

A Study on sub 0.1$\mu\textrm{m}$ ULSI Device Quality Using Novel Titanium Silicide Formation Process & STI (새로운 티타늅 실리사이드 형성공정과 STI를 이용한 서브 0,1$\mu\textrm{m}$ ULSI급 소자의 특성연구)

  • Eom, Geum-Yong;O, Hwan-Sul
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.5
    • /
    • pp.1-7
    • /
    • 2002
  • Deep sub-micron bulk CMOS circuits require gate electrode materials such as metal silicide and titanium silicide for gate oxides. Many authors have conducted research to improve the quality of the sub-micron gate oxide. However, few have reported on the electrical quality and reliability of an ultra-thin gate. In this paper, we will recommend a novel shallow trench isolation structure and a two-step TiS $i_2$ formation process to improve the corner metal oxide semiconductor field-effect transistor (MOSFET) for sub-0.1${\mu}{\textrm}{m}$ VLSI devices. Differently from using normal LOCOS technology, deep sub-micron CMOS devices using the novel shallow trench isolation (STI) technology have unique "inverse narrow-channel effects" when the channel width of the device is scaled down. The titanium silicide process has problems because fluorine contamination caused by the gate sidewall etching inhibits the silicide reaction and accelerates agglomeration. To resolve these Problems, we developed a novel two-step deposited silicide process. The key point of this process is the deposition and subsequent removal of titanium before the titanium silicide process. It was found by using focused ion beam transmission electron microscopy that the STI structure improved the narrow channel effect and reduced the junction leakage current and threshold voltage at the edge of the channel. In terms of transistor characteristics, we also obtained a low gate voltage variation and a low trap density, saturation current, some more to be large transconductance at the channel for sub-0.1${\mu}{\textrm}{m}$ VLSI devices.

Stability of Co/Ni Silicide in Metal Contact Dry Etch (Co/Ni 복합실리사이드의 메탈 콘택 건식식각 안정성 연구)

  • Song Ohsung;Beom Sungjin;Kim Dugjoong
    • Korean Journal of Materials Research
    • /
    • v.14 no.8
    • /
    • pp.573-578
    • /
    • 2004
  • Newly developed silicide materials for ULSI should have the appropriate electrical property of low resistant as well as process compatibility in conventional CMOS process. We prepared $NiCoSi_x$ silicides from 15 nm-Co/15 nm-Ni/Si structure and performed contact dry etch process to confirm the dry etch stability and compatibility of $NiCoSi_x$ layers. We dry etched the photoresist/SiO/silicide/silicon patterns with $CF_4\;and\;CHF_3$ gases with varying powers from 100 to 200 W, and pressures from 45 to 65 mTorr, respectively. Polysilicon and silicon active layers without silicide were etched $0\sim316{\AA}$ during over etch time of 3min, while silicon layers with proposed $NiCoSi_x$ silicide were not etched and showed stable surfaces. Our result implies that new $NiCoSi_x$ silicides may replace the conventional silicides due to contact etch process compatibility.