• Title/Summary/Keyword: Metal oxide addition

Search Result 299, Processing Time 0.027 seconds

Fully Room Temperature fabricated $TaO_x$ Thin Film for Non-volatile Memory

  • Choi, Sun-Young;Kim, Sang-Sig;Lee, Jeon-Kook
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.28.2-28.2
    • /
    • 2011
  • Resistance random access memory (ReRAM) is a promising candidate for next-generation nonvolatile memory because of its advantageous qualities such as simple structure, superior scalability, fast switching speed, low-power operation, and nondestructive readout. We investigated the resistive switching behavior of tantalum oxide that has been widely used in dynamic random access memories (DRAM) in the present semiconductor industry. As a result, it possesses full compatibility with the entrenched complementary metal-oxide-semiconductor processes. According to previous studies, TiN is a good oxygen reservoir. The TiN top electrode possesses the specific properties to control and modulate oxygen ion reproductively, which results in excellent resistive switching characteristics. This study presents fully room temperature fabricated the TiN/$TaO_x$/Pt devices and their electrical properties for nonvolatile memory application. In addition, we investigated the TiN electrode dependence of the electrical properties in $TaO_x$ memory devices. The devices exhibited a low operation voltage of 0.6 V as well as good endurance up to $10^5$ cycles. Moreover, the benefits of high devise yield multilevel storage possibility make them promising in the next generation nonvolatile memory applications.

  • PDF

Microstructure and Electrical Properties of Zn-Pr-Co-Y-M(M=Ni, Mg, Cr) Oxide-Based Varistors (Zn-Pr-Co-Y-M(M=Ni, Mg, Cr) 산화물계 바리스터의 미세구조 및 전기적 특성)

  • Nahm Choon-Woo;Park Jong-Ah
    • Korean Journal of Materials Research
    • /
    • v.14 no.6
    • /
    • pp.420-424
    • /
    • 2004
  • The microstructure and electrical properties of $ZnO-Pr_{6}$$O_{11}$ $-CoO-Y_2$$O_3$-based varistors were investigated with and without various metal oxide additives (NiO, MgO, and $Cr_2$$O_3$). The addition of NiO promoted the grain growth while that of Cr$_2$O$_3$ decreased average grain size. Thereby, the varistor voltage was higher in $Cr_2$$O_3$-added composition. Among $ZnO-Pr_{6}$ $O_{11}$ /$-CoO-Y_2$$O_3$-based varistors, the$ Cr_2$$O_3$-added varistor exhibited the highest nonlinear exponent (51.2), the lowest leakage current (1.3 $\mu$A), and the lowest dielectric dissipation factor (0.0433).

Determination of Mn, Co, Ni and Cu in Iron Oxide Ore by Atomic Absorption spectroscopy. Utilization of APDC-MIBK Extraction System (원자흡수 분광법에 의한 철광석중의 Mn, Co, Ni 및 Cu 의 정량. APDC-MIBK 추출계의 이용)

  • Misun Park;Youn-Doo Kim;Kwanghee Koh Park
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.315-320
    • /
    • 1989
  • A method was presented for the analysis of trace metals in iron oxide ore. The method utilized ammonium pyrrolidinedithiocarbamate (APDC)-methyl isobutyl ketone (MIBK) extraction procedure and analysis by atomic absorption spectroscopy (AA). Citrate at pH $8{\sim}10$ for the determination of Co, Ni and Cu or tiron at pH $6{\sim}7$for the determination of Mn and Cu was added as a masking agent to prevent extraction of Fe(III) into the organic phase. Reduction of solubility of MIBK in water was achieved by addition of NaCl as a salting-out agent. Back extraction of the MIBK extracts with aqueous $HNO_3$ was also studied to increase the stability of metal extracts.

  • PDF

CO Oxidation of Catalytic Filters Consisting of Ni Nanoparticles on Carbon Fiber

  • Seo, Hyun-Ook;Nam, Jong-Won;Kim, Kwang-Dae;Kim, Young-Dok;Lim, Dong-Chan
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.4
    • /
    • pp.1199-1203
    • /
    • 2012
  • Catalytic filters consisting of Ni nanoparticle and carbon fiber with different oxidation states of Ni (either metallic or oxidic) were prepared using a chemical vapor deposition process and various post-annealing steps. CO oxidation reactivity of each sample was evaluated using a batch type quartz reactor with a gas mixture of CO (500 mtorr) and $O_2$ (3 torr) at $300^{\circ}C$. Metallic and oxidic Ni showed almost the same CO oxidation reactivity. Moreover, the CO oxidation reactivity of metallic sample remained unchanged in the subsequently performed second reaction experiment. We suggested that metallic Ni transformed into oxidic state at the initial stage of the exposure to the reactant gas mixture, and Ni-oxide was catalytically active species. In addition, we found that CO oxidation reactivity of Ni-oxide surface was enhanced by increase in the $H_2O$ impurity in the reactor.

Fabrication and Processing Method of Ophthalmic Hydrogel Tinted Lens Containing Indium Tin Oxide-Composited Materials

  • Lee, Min-Jae;Lee, Kyung-Mun;Sung, A-Young
    • Korean Journal of Materials Research
    • /
    • v.28 no.12
    • /
    • pp.685-690
    • /
    • 2018
  • In this study, a multifunctional ophthalmic lens material with an electromagnetic shielding effect, high oxygen permeability, and high water content is tested, and its applicability is evaluated. Metal oxide nanoparticles are applied to the ophthalmic lens material for vision correction to shield harmful electromagnetic waves; the pyridine group is used to improve the antibacterial effect; and silicone substituted with urethane and acrylate is employed to increase the oxygen permeability and water content. In addition, multifunctional tinted ophthalmic lens materials are studied using lens materials with an excellent antibacterial effect (2,6-difluoropyridine, 2-fluoro-4-pyridinecarboxylic acid) and functional (UV protection, high wettability) lens materials (2,4-dihydroxy benzophenone, 2-hydroxy-4-(methacryloyloxy)benzophenone). To solve problems such as air bubbles generated during the polymerization process for the manufacturing and turbidity of the lens surface, polymerization conditions in which the defect rate is minimized are determined. The results show that the polymerization temperature and time are most appropriate when they are $110^{\circ}C$ and 40 minutes, respectively. The optimum injection amount of the polymerization solution is 350 ms. The turbid phenomenon that appears in lens processing is improved by 10 to 95 % according to the test time and conditions.

Improved immune-enhancing activity of egg white protein ovotransferrin after enzyme hydrolysis

  • Lee, Jae Hoon;Kim, Hyeon Joong;Ahn, Dong Uk;Paik, Hyun-Dong
    • Journal of Animal Science and Technology
    • /
    • v.63 no.5
    • /
    • pp.1159-1168
    • /
    • 2021
  • Ovotransferrin (OTF), an egg protein known as transferrin family protein, possess strong antimicrobial and antioxidant activity. This is because OTF has two iron binding sites, so it has a strong metal chelating ability. The present study aimed to evaluate the improved immune-enhancing activities of OTF hydrolysates produced using bromelain, pancreatin, and papain. The effects of OTF hydrolysates on the production and secretion of pro-inflammatory mediators in RAW 264.7 macrophages were confirmed. The production of nitric oxide (NO) was evaluated using Griess reagent and the expression of inducible nitric oxide synthase (iNOS) were evaluated using quantitative real-time polymerase chain reaction (PCR). And the production of pro-inflammatory cytokines (tumor necrosis factor [TNF]-α and interleukin [IL]-6) and the phagocytic activity of macrophages were evaluated using an ELISA assay and neutral red uptake assay, respectively. All OTF hydrolysates enhanced NO production by increasing iNOS mRNA expression. Treating RAW 264.7 macrophages with OTF hydrolysates increased the production of pro-inflammatory cytokines and the phagocytic activity. The production of NO and pro-inflammatory cytokines induced by OTF hydrolysates was inhibited by the addition of specific mitogen-activated protein kinase (MAPK) inhibitors. In conclusion, results indicated that all OTF hydrolysates activated RAW 264.7 macrophages by activating MAPK signaling pathway.

A Study on the Surface Properties and Corrosion Behavior of Functional Aluminum 3003 Alloy using Anodization Method (양극산화 방법을 이용한 기능성 알루미늄 3003 합금의 표면 특성 및 부식 거동 연구)

  • Kim, Jisoo;Jeong, Chanyoung
    • Corrosion Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.290-299
    • /
    • 2022
  • Anodizing is an electrochemical surface treatment method conferring corrosion resistance and durability by forming a thick anodization film on the metal surface. Aluminum has a long service life and high thermal conductivity and formability, as well as excellent corrosion resistance. Aluminum 3003 alloy has improved formability, strength, and corrosion resistance due to the addition of a small amount of manganese. However, corrosion occurs in seawater and environments polluted with corrosion-inducing substances, which reduce corrosion resistance. Therefore, it is necessary to artificially form a thick anodized film to improve corrosion resistance. In this study, the anodization treatment time was 4 minutes, and voltages of 10 V, 20 V, 30 V, 40 V, 50 V, 60 V, 70 V, 80 V, 90 V, and 100 V were applied. The thickness and pore size of the oxide film increased according to the applied voltage. A barrier film was formed under voltage conditions from 10 V to 50 V, and a porous film was formed under voltage conditions from 60 V to 100 V. After anodizing, coating was applied. Wettability and corrosion resistance were observed before and after coating according to the surface shape and thickness of the oxide film.

A Study on Photoreceptor by Using the Effect of Additives

  • Yu, Jin;Kim, Yeong Sun;Yu, Guk Hyeon
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.7
    • /
    • pp.709-715
    • /
    • 2001
  • We have been studied photosensitization mechanism's additive effect, of perylene 3,4,9,10-tetracarboxyl-diimide and X-phthalocyanine (charge generation materials), using the photochemical and photoelectrochemical approach. It was found that the photoreceptor on the excited state reacts with metal oxide, which creates the charge transfer on the interface of SnO2/electrolyte. In the electrode (X5P1) made of five X-phthalocyanine and single perylene 3,4,9,10-tetracarboxyldiimide layers, the cathodic photocurrent of X-phthalocyanine in the 400-600 nm region was increased by the addition of perylene 3,4,9,10-tetracarboxyldiimide. The maximum wavelength of fluorescence of perylene 3,4,9,10-tetracarboxyldiimide showed no dependence on the temperature. The addition of 4-dibenzylamino-2-methylbenzaldehyde diphenylhydrazone known as charge transport material was represented as decreasing photocurrent for X-phthalocyanine and perylene 3,4,9,10-tetracarboxyldiimide, respectively. In the electrode (X1P1) made of single X-phthalocyanine and single perylene 3,4,9,10-tetracarboxyldiimide layers, an anodic photocurrent of about 10.5 nA was generated by addition of hydroquinone at 550 nm. And the characteristic of photoinduced discharge was shown to decrease by a factor of 5 and the speed of dark decay was increased by a factor of 1.2.

Etching characteristics of Ru thin films with $CF_4/O_2$ gas chemistry ($CF_4/O_2$ gas chemistry에 의한 Ru 박막의 식각 특성)

  • Lim, Kyu-Tae;Kim, Dong-Pyo;Kim, Chang-Il;Choi, Jang-Hyun;Song, Joon-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05b
    • /
    • pp.74-77
    • /
    • 2002
  • Ferroelectric Random Access Memory(FRAM) and MEMS applications require noble metal or refractory metal oxide electrodes. In this study, Ru thin films were etched using $O_2$+10% $CF_4$ plasma in an inductively coupled plasma(ICP) etching system. The etch rate of Ru thin films was examined as function of rf power, DC bias applied to the substrate. The enhanced etch rate can be obtained not only with increasing rf power and DC bias voltage, but also with small addition $CF_4$ gas. The selectivity of $SiO_2$ over Ru are 1.3. Radical densities of oxygen and fluorine in $CF_4/O_2$ plasma have been investigated by optical emission spectroscopy(OES). The etching profiles of Ru films with an photoresist pattern were measured by a field emission scanning electron microscope (FE-SEM). The additive gas increases the concentration of oxygen radicals, therefore increases the etch rate of the Ru thin films and enhances the etch slope. In $O_2$+10% $CF_4$ plasma, the etch rate of Ru thin films increases up to 10% $CF_4$ but decreases with increasing $CF_4$ mixing ratio.

  • PDF

High-temperature Oxidation of Fe-2%Ni Alloys (Fe-2%Ni 합금의 고온 산화)

  • Lee, Dong Bok;Jung, Jae Ok;Park, Soon Yong;Cho, Gyu Chul;Xiao, Xiao;Kim, Min Jung
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.2
    • /
    • pp.104-109
    • /
    • 2018
  • Fe-2 wt.%Ni alloys were fabricated by metal powder injection molding, and their oxidation behavior at $600-700^{\circ}C$ for 30 h in air was studied in order to find the effect of the small addition of Ni in the iron matrix on the high-temperature oxidation. Oxide scales that formed after oxidation consisted primarily of $Fe_2O_3$, where microscopic voids were scattered. Nickel was segregated initially at the scale/matrix interface, and later at the lower part of the $Fe_2O_3$ scale. At $600^{\circ}C$, Fe-2wt.%Ni alloys oxidized parabolically initially, and linearly after 15 h. At $650-700^{\circ}C$, they oxidized linearly from the initial period. Although Fe-2wt.%Ni alloys oxidized slower than pure iron, their oxidation rates were relatively fast.