Browse > Article
http://dx.doi.org/10.14773/cst.2022.21.4.290

A Study on the Surface Properties and Corrosion Behavior of Functional Aluminum 3003 Alloy using Anodization Method  

Kim, Jisoo (Department of Advanced Materials Engineering, Dong-eui University)
Jeong, Chanyoung (Department of Advanced Materials Engineering, Dong-eui University)
Publication Information
Corrosion Science and Technology / v.21, no.4, 2022 , pp. 290-299 More about this Journal
Abstract
Anodizing is an electrochemical surface treatment method conferring corrosion resistance and durability by forming a thick anodization film on the metal surface. Aluminum has a long service life and high thermal conductivity and formability, as well as excellent corrosion resistance. Aluminum 3003 alloy has improved formability, strength, and corrosion resistance due to the addition of a small amount of manganese. However, corrosion occurs in seawater and environments polluted with corrosion-inducing substances, which reduce corrosion resistance. Therefore, it is necessary to artificially form a thick anodized film to improve corrosion resistance. In this study, the anodization treatment time was 4 minutes, and voltages of 10 V, 20 V, 30 V, 40 V, 50 V, 60 V, 70 V, 80 V, 90 V, and 100 V were applied. The thickness and pore size of the oxide film increased according to the applied voltage. A barrier film was formed under voltage conditions from 10 V to 50 V, and a porous film was formed under voltage conditions from 60 V to 100 V. After anodizing, coating was applied. Wettability and corrosion resistance were observed before and after coating according to the surface shape and thickness of the oxide film.
Keywords
Anodization; Aluminum alloy; Hydrophilicity; Hydrophobicity; Corrosion resistance;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. Jeong, J. Lee, K. Sheppard, CH Choi, Air-Impregnated Nanoporous Anodic Aluminum Oxide Layers for Enhancing the Corrosion Resistance of Aluminum, Langmuir, 31, 11040 (2015). Doi: https://doi.org/10.1021/acs.langmuir.5b02392   DOI
2 M. Saeeddikhani, M. Javidi, A. Yazdani, Anodizing of 2024-T3 aluminum alloy in sulfuric-boric-phosphoric acids and its corrosion behavior, Transactions of Nonferrous Metals Society of China, 23, 2551 (2013). Doi: https://doi.org/10.1016/S1003-6326(13)62767-3   DOI
3 C. Jeong, A Study on Functional Hydrophobic Stainless Steel 316L Using Single-Step Anodization and a Self-Assembled Monolayer Coating to Improve Corrosion Resistance, Coatings, 12, 395 (2022). Doi: https://doi.org/10.3390/coatings12030395   DOI
4 C. Blawert, W. Dietzel, E. Ghali, Anodizing Treatments for Magnesium Alloys and Their Effect on Corrosion Resistance in Various Environments, Advanced Engineering Materials, 8, 511 (2006). Doi: https://doi.org/10.1002/adem.200500257   DOI
5 Z. Wu, C. Richter, L. Menon, A Study of Anodization Process during Pore Formation in Nanoporous Alumina Templates, Journal of the Electrochemical Society, 154, E8 (2006). Doi: https://doi.org/10.1149/1.2382671   DOI
6 Z.B. Xie, S. Adams, D.J. Blackwood, J. Wang, The effects of anodization parameters on titania nanotube arrays and dye sensitized solar cells, Nanotechnology, 19, 405701 (2008). Doi: https://doi.org/10.1088/0957-4484/19/40/405701   DOI
7 G.L. Song, Z. Shi, Corrosion mechanism and evaluation of anodized magnesium alloys, Corrosion Science, 85, 126 (2014). Doi: https://doi.org/10.1016/j.corsci.2014.04.008   DOI
8 S.H. Kim, C. Jeong, Feasibility of Machine Learning Algorithms for Predicting the Deformation of Anodic Titanium Films by Modulating Anodization Processes, Materials, 14, 1089 (2021). Doi: https://doi.org/10.3390/ma14051089   DOI
9 C. L. Ban, F. R. Wang, J. H. Chen, Z. Q. Liu, Effect of Hydration on Microstructure and Property of Anodized Oxide Film for Aluminum Electrolytic Capacitor. Journal of Materials Science: Materials in Electronics, 29, 16166 (2018). Doi: https://doi.org/10.1007/s10854-018-9705-9   DOI
10 A. Cassie and S. Baxter, Wettability of porous surfaces, Transactions of the Faraday society, 40, 546 (1944). Doi: https://doi.org/10.1039/TF9444000546   DOI
11 H. Y. Erbil, C. E. Cansoy, Range of Applicability of the Wenzel and Cassie-Baxter Equations for Superhydrophobic Surfaces, Langmuir, 25, 14135 (2009). Doi: https://doi.org/10.1021/la902098a   DOI
12 H. Takakashi, M.Chiba, Role of Anodic Oxide Films in the Corrosion of Aluminum and its alloys, Corrosion Reviews, 36, 35 (2018). Doi: https://doi.org/10.1515/corrrev-2017-0048   DOI
13 C. Crossland, G. E. Thompson, C. J. E. Smith, H. Habazaki, K. Shimizu, P. Skeldon, Formation of Manganese-rich Layers during Anodizing of Al-Mn Alloys, Corrosion science, 41, 2053 (1999). Doi: https://doi.org/10.1016/S0010-938X(99)00025-6   DOI
14 C. Jeong, C. H. Choi, Single-Step Direct Fabrication of Pillar-on-Pore Hybrid Nanostructures in Anodizing Aluminum for Superior Superhydrophobic Efficiency. ACS Applied Materials & Interfaces, 4, 842 (2012). Doi: https://doi.org/10.1021/am201514n   DOI
15 J. Li, H. Wei, K. Zhao, M. Wang, D. Chen, M. Chen, Effect of Anodizing Temperature and Organic Acid Addition on the Structure and Corrosion Resistance of Anodic Aluminum Oxide Films, Thin Solid Films, 713, 138359 (2020). Doi: https://doi.org/10.1016/j.tsf.2020.138359   DOI
16 Y. Wang, W. wang, L. Zhong, J. Wang, Q. Jiang. X. Guo, Super-Hydrophobic Surface on Pure Magnesium Substrate by Wet Chemical Method, Applied Surface Science, 256, 3837 (2010). Doi: https://doi.org/10.1016/j.apsusc.2010.01.037   DOI
17 L. Bouchama, N. Azzouz, N. Boukmouche, J. P. Chopart, A. L. Daltin, Y. Bouznit, Enhancing Aluminum Corrosion Resistance By Two-Step Anodizing Process, Surface and Coatings Technology, 25, 676 (2013). Doi: https://doi.org/10.1016/j.surfcoat.2013.08.046   DOI
18 H. A. Elkilany, M. A. Shoeib, O. E. Abdel-Salam, Influence of Hard Anodizing on the Mechanical and Corrosion Properties of Different Aluminum Alloys Metallography, Microstructure, and Analysis, 8, 861 (2019). Doi: https://doi.org/10.1007/s13632-019-00594-5   DOI
19 A. Milionis, E. Loth, I. S. Bayer, Recent Advances in the Mechanical Durability of Superhydrophobic Materials, Advances in colloid and interface science, 229, 57 (2016). Doi: https://doi.org/10.1016/j.cis.2015.12.007   DOI
20 M.D. Havigh, B. Wouter, N. Hallemans, Operando odd random phase electrochemical impedance spectroscopy for in situ monitoring of the anodizing process, Electrochemistry Communications, 137, 107268 (2022). Doi: https://doi.org/10.1016/j.elecom.2022.107268   DOI
21 X. Li, S. Yin, S. Huang, H. Luo, Q. Tang, Fabrication of durable superhydrophobic Mg alloy surface with water-repellent, temperature-resistant, and self-cleaning properties, Vacuum, 173, 109172 (2020). Doi: https://doi.org/10.1016/j.vacuum.2020.109172   DOI
22 M. Mehdizade, M. Soltanieh, A.R. Eivani, Investigation of anodizing time and pulse voltage modes on the corrosion behavior of nanostructured anodic layer in commercial pure aluminum, Surface and Coatings Technology, 358, 741 (2019). Doi: https://doi.org/10.1016/j.surfcoat.2018.08.046   DOI
23 W. F. Cui, L. Jin, L.Zhou, Surface Characteristics and Electrochemical Corrosion Behavior of a Pre-anodized Microarc Oxidation Coating on Titanium Alloy, Materials Science and Engineering: C, 33, 3775 (2013). Doi: https://doi.org/10.1016/j.msec.2013.05.011   DOI
24 F. Li, L. Zhang, R. M. Metzger, On the Growth of Highly Ordered Pores in Anodized Aluminum Oxide, Chemistry of Materials, 10, 2470 (1998). Doi: https://doi.org/10.1021/cm980163a   DOI
25 C. Jeong, H. Ji, Systematic Control of Anodic Aluminum Oxide Nanostructures for Enhancing the Superhydrophobicity of 5052 Aluminum Alloy, Materials, 12, 3231 (2019). Doi: https://doi.org/10.3390/ma12193231   DOI
26 J. Chen, J. Xiao, J. Poplawsky, F. M. Michel, C. Deng, W. Cai, The Origin of Passivity in Aluminum-Manganese Solid Solutions, Corrosion Science, 173, 108749 (2020). Doi: https://doi.org/10.1016/j.corsci.2020.108749   DOI
27 Y. Ma, X. Zhou, Y. Liao, X. Chen, C. Zhang, H. Wu, Z. Wang, W. Huang, Effect of Anodizing Parameters on Film Morphology and Corrosion Resistance of AA2099 Aluminum-Lithium Alloy, Journal of The Electrochemical Society, 163, C369 (2016). Doi: https://doi.org/10.1149/2.1081607jes   DOI
28 H. Voon, M. N. Derman, U. Hashim, K. L. Foo, T. Adam, Effect of Anodizing Voltage on the Morphology and Growth Kinetics of Porous Anodic Alumina on Al-0.5 wt% Mn Alloys, Advanced Materials Research, 832, 101 (2014). Doi: https://doi.org/10.4028/www.scientific.net/AMR.832.101   DOI
29 C. H. Voon, M. N. Derman, Effect of Electrolyte Concentration on the Growth of Porous Anodic Aluminium Oxide (AAO) on Al-Mn Alloys, Advanced Materials Research, 626, 610 (2013). Doi: https://doi.org/10.4028/www.scientific.net/AMR.626.610   DOI
30 J. Thangthong, S. Prombanpong, An Analysis of Burn Defect in Hard Anodized Process of Al 3003, Advanced Materials Research, 1119, 475 (2015). Doi: https://doi.org/10.4028/www.scientific.net/AMR.1119.475   DOI
31 C. Jeong, Ph. D. Thesis, p132, Stevens Institute of Technology, New Jersey (2013).
32 Y. Huang, H. Shih, H. Huang, J. Daugherty, S. Wu, S. Ramanathan, C. Chang, F. Mansfeld, Evaluation of the Corrosion Resistance of Anodized Aluminum 6061 using Electrochemical Impedance Spectroscopy (EIS), Corrosion Science, 50, 3569 (2008). Doi: https://doi.org/10.1016/j.corsci.2008.09.008   DOI
33 Y. Alivov, M. Pandikunta, S. Nikishin, Z.Y. Fan, The anodization voltage influence on the properties of TiO2 nanotubes grown by electrochemical oxidation, Nanotechnology, 20, 225602 (2009). Doi: https://doi.org/10.1088/0957-4484/20/22/225602   DOI
34 Y. Suzuki, K. Kawahara, T. Kikuchi, R. O. Suzuki, S. Natsui, Corrosion-resistant Porous Alumina Formed via Anodizing Aluminum in Etidronic Acid and its Pore-Sealing Behavior in Boiling Water, Journal of The Electrochemical Society, 166, C261 (2019). Doi: https://doi.org/10.1149/2.0221912jes   DOI
35 A. S. Darmawan, T. W. B. Riyadi, A. Hamid, B. W. Febriantoko, B. S. Putra, Corrosion Resistance Improvement of Aluminum under Anodizing Process, AIP Conference Proceedings, 1977, 020006 (2018). Doi: https://doi.org/10.1063/1.5042862   DOI
36 A. Rattanasatitkul, S. Prombanpong, P. Tuengsook, An Effect of Process Parameters to Anodic Thickness in Hard Anodizing Process, Materials Science Forum, 872, 168 (2016). Doi: https://doi.org/10.4028/www.scientific.net/MSF.872.168   DOI
37 L. Benea, N. Simionescu-Bogatu, R. Chiriac, Electrochemically Obtained Al2O3 Nanoporouslayers with Increased Anticorrosive Properties of Aluminum Alloy, Journal of Materials Research and Technology, 17, 2636 (2022). Doi: https://doi.org/10.1016/j.jmrt.2022.02.038   DOI
38 K. Schwirn, W. Lee, R. Hillebrand, M. Steinhart, K. Nielsch, U. Gosele, Self-Ordered Anodic Aluminum Oxide Formed by H2SO4 Hard Anodization, ACS nano, 2, 302 (2008). Doi: https://doi.org/10.1021/nn7001322   DOI
39 J. Y. Kim, K. H. Lee, J. Sin, S. H. Park, J. S. Kang, K. S. Han, M. M. Sung, N. Pinna, Y. E. Sung, Highly Ordered and Vertically Oriented TiO2/Al2O3 Nanotube Electrodes for Application in Dye-Sensitized Solar Cells, 25, 504003 (2014). Doi: https://doi.org/10.1088/0957-4484/25/50/504003   DOI
40 C.J. Donahue, J.A. Exline, Anodizing and Coloring Aluminum Alloys, Journal of Chemical Education, 91, 711 (2014). Doi: https://doi.org/10.1021/ed3005598   DOI