Browse > Article
http://dx.doi.org/10.3740/MRSK.2018.28.12.685

Fabrication and Processing Method of Ophthalmic Hydrogel Tinted Lens Containing Indium Tin Oxide-Composited Materials  

Lee, Min-Jae (Department of Optometry & Vision Science, Catholic University of Daegu)
Lee, Kyung-Mun (Devision of Research & Development, Vision Science Co., Ltd)
Sung, A-Young (Department of Optometry & Vision Science, Catholic University of Daegu)
Publication Information
Korean Journal of Materials Research / v.28, no.12, 2018 , pp. 685-690 More about this Journal
Abstract
In this study, a multifunctional ophthalmic lens material with an electromagnetic shielding effect, high oxygen permeability, and high water content is tested, and its applicability is evaluated. Metal oxide nanoparticles are applied to the ophthalmic lens material for vision correction to shield harmful electromagnetic waves; the pyridine group is used to improve the antibacterial effect; and silicone substituted with urethane and acrylate is employed to increase the oxygen permeability and water content. In addition, multifunctional tinted ophthalmic lens materials are studied using lens materials with an excellent antibacterial effect (2,6-difluoropyridine, 2-fluoro-4-pyridinecarboxylic acid) and functional (UV protection, high wettability) lens materials (2,4-dihydroxy benzophenone, 2-hydroxy-4-(methacryloyloxy)benzophenone). To solve problems such as air bubbles generated during the polymerization process for the manufacturing and turbidity of the lens surface, polymerization conditions in which the defect rate is minimized are determined. The results show that the polymerization temperature and time are most appropriate when they are $110^{\circ}C$ and 40 minutes, respectively. The optimum injection amount of the polymerization solution is 350 ms. The turbid phenomenon that appears in lens processing is improved by 10 to 95 % according to the test time and conditions.
Keywords
electromagnetic shielding; polymerization condition; turbid phenomenon;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. W. Gellatly, N. A. Brennan and N. Efron, Am. J. Optometry Physiol. Opt., 65, 934 (1988).
2 C. E. Soltys-Robitaille, D. M. Ammon, Jr, P. L. Valint, Jr and G. L. Grobe, III, Biomaterials, 22, 3257 (2001).   DOI
3 T. H. Kim, K. H. Ye and A. Y. Sung, Korean J. Vis. Sci., 12, 119 (2010).
4 K. H. Ye, T. H. Kim and A. Y. Sung, J. Korean Oph. Opt. Soc., 13, 29 (2008).
5 S. A. Cho, S. Y. Park, T. H. Kim and A. Y. Sung, Korean J. Vis. Sci., 14, 69 (2012).
6 T. H. Kim, K. H. Ye and A. Y. Sung, Korean J. Vis. Sci., 12, 119 (2010).
7 J. H. Choi, N. Kim, S. C. Hong, Y. S. Kim, and S. H. Choi, Kor. J. Environmental Health, 32, 268 (2006).
8 J. C. Lin, Wireless Networks, 3, 439 (1997).   DOI
9 K. S. Nageswari, Proceeding of the International Conference on Non-Ionizing Radiation (ICNIR 2003), 20, 1 (2003).
10 D. K. Li, R. Odouli, S. Wi, T. Janevic, I. Golditch, T. D. Bracken, R. Senior, R. Rankin and R. Iriye, Epidemiology, 13, 9 (2002).   DOI
11 E. R. Adair and R. C. Petersen, IEEE Transactions on Microwave Theory and Techniques, 50, 953 (2002).   DOI
12 Y. S. Kim, Y. S. Jeon, and S. S. Kim, Korean J. Mater. Res., 9, 1055 (1999).
13 F. M. B. Coutinho, D. L. Carvalho, M. L. L. Aponte and C. C. R. Barbosa, Polymer, 42, 43 (2001).   DOI
14 T. H. Kim and A. Y. Sung, Korean J. Chem. Soc., 54, 487 (2010).   DOI
15 S. S. Baek, KOR patent No.1020140060375 (2014).
16 S. C. Lee, KOR patent No. 1020170030076 (2017).
17 T. H. Kim and A. Y. Sung, J. Korean Oph. Opt. Soc., 11, 351 (2006).
18 Ministry of Food and Drug Safety. Guidelines for vision safety and performance evaluation of contact lenses for vision correction, 2015. Retrieved July 30, 2018 from http://www.mfds.go.kr/brd/m_210/view.do?seq=12133
19 M. J. Lee and A. Y. Sung, J. Nanosci. Nanotechnol., 17, 7400 (2017).   DOI
20 J. N. Cha, Y. Zhang, H. S. P. Wong, S. Raoux, C. Rettner, L. Krupp and V. Deline, Chem. Mater., 19, 839 (2007).   DOI