Browse > Article
http://dx.doi.org/10.5012/bkcs.2012.33.4.1199

CO Oxidation of Catalytic Filters Consisting of Ni Nanoparticles on Carbon Fiber  

Seo, Hyun-Ook (Department of Chemistry, Sungkyunkwan University)
Nam, Jong-Won (Department of Chemistry, Sungkyunkwan University)
Kim, Kwang-Dae (Department of Chemistry, Sungkyunkwan University)
Kim, Young-Dok (Department of Chemistry, Sungkyunkwan University)
Lim, Dong-Chan (Materials Processing Division, Korea Institute of Materials Science)
Publication Information
Abstract
Catalytic filters consisting of Ni nanoparticle and carbon fiber with different oxidation states of Ni (either metallic or oxidic) were prepared using a chemical vapor deposition process and various post-annealing steps. CO oxidation reactivity of each sample was evaluated using a batch type quartz reactor with a gas mixture of CO (500 mtorr) and $O_2$ (3 torr) at $300^{\circ}C$. Metallic and oxidic Ni showed almost the same CO oxidation reactivity. Moreover, the CO oxidation reactivity of metallic sample remained unchanged in the subsequently performed second reaction experiment. We suggested that metallic Ni transformed into oxidic state at the initial stage of the exposure to the reactant gas mixture, and Ni-oxide was catalytically active species. In addition, we found that CO oxidation reactivity of Ni-oxide surface was enhanced by increase in the $H_2O$ impurity in the reactor.
Keywords
Metal : Ni; CO oxidation; Carbon fiber; Chemical vapor deposition;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Gao, F.; Goodman, D. W. Langmuir 2010, 26, 16540.   DOI   ScienceOn
2 Gao, F; Wang, Y.; Cai, Y.; Goodman, D. W. J. Phys. Chem. 2009, 113, 174.
3 McClure, S. M.; Goodman, D. W. Chem. Phys. Lett. 2009, 469, 1.   DOI
4 Ackermann, M. D.; Pedersen, T. M.; Hendriksen, B. L. M.; Robach, O.; Bobaru, S. C.; Popa, I.; Quiros, C.; Kim, H.; Hammer, B.; Ferrer, S.; Frenken, J. W. M. Phys. Rev. Lett. 2005, 95, 4.
5 Grass, M. E.; Zhang, Y. W.; Butcher, D. R.; Park, J. Y.; Li, Y. M.; Bluhm, H.; Bratlie, K. M.; Zhang, T. F.; Somorjai, G. A. Angew. Chem. Int. Ed. 2008, 47, 8893.   DOI   ScienceOn
6 Hendriksen, B. L. M.; Frenken, J. W. M. Phys. Rev. Lett. 2002, 89, 4.
7 Over, H.; Balmes, O.; Lundgren, E. Surf. Sci. 2009, 603, 298.   DOI   ScienceOn
8 Over, H.; Kim, Y. D.; Seitsonen, A. P.; Wendt, S.; Lundgren, E.; Schmid, M.; Varga, P.; Morgante, A.; Ertl, G. Science 2000, 287, 1474.   DOI
9 Knudsen, J.; Merte, L. R.; Peng, G. W.; Vang, R. T.; Resta, A.; Laegsgaard, E.; Andersen, J. N.; Mavrikakis, M.; Besenbacher, F. Acs Nano. 2010, 4, 4380.   DOI   ScienceOn
10 Peng, G. W.; Merte, L. R.; Knudsen, J.; Vang, R. T.; Laegsgaard, E.; Besenbacher, F.; Mavrikakis, M. J. Phys. Chem. C 2010, 114, 21579.   DOI   ScienceOn
11 Zhao, B.; Ke, X.-K.; Bao, J.-H.; Wang, C.-L.; Dong, L.; Chen, Y.- W.; Chen, H.-L. J. Phys. Chem. C 2009, 113, 14440.   DOI   ScienceOn
12 Wang, D. S.; Xu, R.; Wang, X.; Li, Y. D. Nanotechnol. 2006, 17, 979.   DOI   ScienceOn
13 Rajasree, R.; Hoebink, J. H. B. J.; Schouten, J. C. J. Catal. 2004, 223, 36.   DOI   ScienceOn
14 Gong, X. J. Chem. Phys. 2003, 119, 6324.   DOI   ScienceOn
15 Bergeld, J.; Kasemo, B.; Chakarov, D. V. Surf. Sci. 2001, 495, L815.   DOI   ScienceOn
16 Moulder, J. F.; Stickle, W. F.; Sobol, P. E.; Bomben, K. D. Hankbook of X-ray Photoelectron Spectroscopy; Chastain, J., King, R. C., Jr., Eds.; Physical Electronics, Inc: Minnesota, U.S.A., 1995.
17 Greiner, M. T.; Helander, M. G.; Wang, Z.-B.; Tang, W.-M.; Lu, Z.-H. J. Phys. Chem. C 2010, 114, 19777.   DOI   ScienceOn
18 Biesinger, M. C.; Payne, B. P.; Lau, L. W. M.; Gerson, A.; Smart, R. S. C. Surf. Interf. Anal. 2009, 41, 324.   DOI   ScienceOn
19 Chen, M. S.; Wang, X. V.; Zhang, L. H.; Tang, Z. Y.; Wan, H. L. Langmuir 2010, 26, 18113.   DOI   ScienceOn
20 Ertl, G. Adv. Catal. 2000, 45, 1.   DOI