• 제목/요약/키워드: Metal impurity

검색결과 116건 처리시간 0.032초

전자빔 조사중 유리의 전하축적 특성 (Properties of Charge Accumulation in Glass under Electron Beam Irradiation)

  • 박찬;최용성;이경섭
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.2305-2306
    • /
    • 2008
  • Charging of spacecraft occurs in plasma and radiation environment. Especially, we focused on an accident caused by internal charging in a glass material that was used as the cover plate of solar panel array, and tried to measure the charge distribution in glass materials under electron beam irradiation by using a PEA (Pulsed Electro-Acoustic method) system. In the case of a quartz glass (pure $SiO_2$), no charge accumulation was observed either during or after the electron beam irradiation. On the contrary, positive charge accumulation was observed in glass samples containing metal-oxide components. It is found that the polarity of the observed charges depends on the contents of the impurities. To identify which impurity dominates the polarity of the accumulated charge, we measured charge distributions in several glass materials containing various metal-oxide components and calculated the trap energy depths from the charge decay characteristics of all glass samples.

  • PDF

Preparation of Carbon Nanofibers by Catalytic CVD and Their Purification

  • Lim, Jae-Seok;Lee, Seong-Young;Park, Sei-Min;Kim, Myung-Soo
    • Carbon letters
    • /
    • 제6권1호
    • /
    • pp.31-40
    • /
    • 2005
  • The carbon nanofibers (CNFs) were synthesized through the catalytic decomposition of hydrocarbons in a quartz tube reactor. The CNFs prepared from $C_3H_8$ at $550^{\circ}C$ was selected as the purification sample due to the higher content of impurity than that prepared from other conditions. In this study, we carried out the purification of CNFs by oxidation in air or carbon dioxide after acid treatment, and investigated the influence of purification parameters such as kind of acid, concentration, oxidation time, and oxidation temperature on the structure of CNFs. The metal catalysts could be easily eliminated from the prepared CNFs by liquid phase purification with various acids and it was verified by ICP analysis, in which, for example, Ni content decreased from 2.51% to 0.18% with 8% nitric acid. However, the particulate carbon and heterogeneous fibers were not removed from the prepared CNFs by thermal oxidation in air and carbon dioxide. This result can be explained by that the direction of graphene sheet in CNFs is vertical to the fiber axis and the CNFs are oxidized at about the similar rate with the impurity carbon.

  • PDF

GaAs와 InP에 격자정합된 GaINAsP 이중조직에서 불순물 확산에 의한 상호확산 촉진 (Impurity Diffusion Enhancement of Interdiffusion in GalnAsP Heterostructures Lattice Matched to GaAs and InP)

  • 박효훈;이경호;남은수;이용탁
    • ETRI Journal
    • /
    • 제11권4호
    • /
    • pp.84-97
    • /
    • 1989
  • The influence of Zn, Si and Te diffusion on the interdiffusion in $GaAs-Ga_1_-xIN_xAs_1__yP_y$and InP$Ga_1__xIn_xAs_1__yP_y$ heterostructures was studied. The heterostructures were grown by liquid phase epitaxy, and the impurity diffusion into the heterostructures was carried out using metal compound or element sources. The extent of interdiffusion for both group III and V atoms was observed by depth profiling of matrix elements with secondary ion mass spectrometry and Auger electron spectroscopy. Selective enhancement of cation interdiffusion was observed by the concurrent Zn diffusion in both the GaAs based-and InP based-crystals. In contrast to the Zn diffusion, the Si diffusion in the GaAs based-crystal and the Te diffusion in the InP based-crystal enhanced both cation and anion interdiffusion to the same extent. A kick-out mechanism is proposed to explain the selective enhancement of the cation interdiffusion due to Zn, and a single vacancy mechanism is proposed for the interdiffusion due to Si and Te.

  • PDF

PARTICLE SIZE-DEPENDENT PULVERIZATION OF B4C AND GENERATION OF B4C/STS NANOPARTICLES USED FOR NEUTRON ABSORBING COMPOSITES

  • Kim, Jaewoo;Jun, Jiheon;Lee, Min-Ku
    • Nuclear Engineering and Technology
    • /
    • 제46권5호
    • /
    • pp.675-680
    • /
    • 2014
  • Pulverization of two different sized micro-$B_4C$ particles (${\sim}10{\mu}m$ and ${\sim}150{\mu}m$) was investigated using a STS based high energy ball milling system. Shapes, generation of the impurities, and reduction of the particle size dependent on milling time and initial particle size were investigated using various analytic tools including SEM-EDX, XRD, and ICP-MS. Most of impurity was produced during the early stage of milling, and impurity content became independent on the milling time after the saturation. The degree of particle size reduction was also dependent on the initial $B_4C$ size. It was found that the STS nanoparticles produced from milling is strongly bounded with the $B_4C$ particles forming the $B_4C$/STS composite particles that can be used as a neutron absorbing nanocomposite. Based on the morphological evolution of the milled particles, a schematic pulverization model for the $B_4C$ particles was constructed.

통전활성소결법으로 제조한 VO2의 금속-절연체 전이 특성에 W와 Mg 첨가가 미치는 영향 (The Effect of Mg/W Addition on the Metal-insulator Transition of VO2 Using Spark Plasma Sintering)

  • 진우찬;김영진;박찬;장혜진
    • 마이크로전자및패키징학회지
    • /
    • 제29권4호
    • /
    • pp.63-69
    • /
    • 2022
  • 이산화 바나듐은 금속-절연체 전이라는 독특한 특성으로 인해 기초적인 소재 연구 및 산업에의 응용을 위한 연구가 꾸준하게 진행되고 있다. 본 연구에서는 통전활성소결법으로 제조한 이산화 바나듐의 금속-절연체 전이 특성에 마그네슘과 텅스텐 첨가가 미치는 영향을 연구하였으며, 덩어리 시편을 대상으로 그 거동을 고찰하였다. 상용 분말과 통전활성소결법을 이용하여 열처리를 진행하여 제작한 시편의 경우 격자 상수의 변화는 크지 않고 이차상이 존재하였으며, 이로 인해 상전이 온도는 64.2-64.6℃에 분포하는 것으로 나타났다. 반면 불순물의 종류와 함량에 따라 전기전도도는 최대 2.4배 증가하거나 최대 57.4배 감소하는 거동을 나타냈다. 열전도도는 불순물의 첨가에 따라 증가하는 거동을 나타냈으며, 상전이 온도 이전에서는 1.8~2.5 W/m·K, 성전이 온도 이후에서는 1.9~2.8 W/m·K의 값을 가졌다. 이러한 물성 변화는 불순물의 첨가로 인한 전하 나르개 농도의 변화, 불순물의 산란중심, 미세구조의 변화 등이 복합적으로 작용한 결과로 해석할 수 있다.

Synthesis of metallic copper nanoparticles and metal-metal bonding process using them

  • Kobayashi, Yoshio;Nakazawa, Hiroaki;Maeda, Takafumi;Yasuda, Yusuke;Morita, Toshiaki
    • Advances in nano research
    • /
    • 제5권4호
    • /
    • pp.359-372
    • /
    • 2017
  • Metallic copper nanoparticles were synthesised by reduction of copper ions in aqueous solution, and metal-metal bonding by using the nanoparticles was studied. A colloid solution of metallic copper nanoparticles was prepared by mixing an aqueous solution of $CuCl_2$ (0.01 M) and an aqueous solution of hydrazine (reductant) (0.2-1.0 M) in the presence of 0.0005 M of citric acid and 0.005 M of n-hexadecyltrimethylammonium bromide (stabilizers) at reduction temperature of $30-80^{\circ}C$. Copper-particle size varied (in the range of ca. 80-165 nm) with varying hydrazine concentration and reduction temperature. These dependences of particle size are explained by changes in number of metallic-copper-particle nuclei (determined by reduction rate) and changes in collision frequency of particles (based on movement of particles in accordance with temperature). The main component in the nanoparticles is metallic copper, and the metallic-copper particles are polycrystalline. Metallic-copper discs were successfully bonded by annealing at $400^{\circ}C$ and pressure of 1.2 MPa for 5 min in hydrogen gas with the help of the metalli-ccopper particles. Shear strength of the bonded copper discs was then measured. Dependences of shear strength on hydrazine concentration and reduction temperature were explained in terms of progress state of reduction, amount of impurity and particle size. Highest shear strength of 40.0 MPa was recorded for a colloid solution prepared at hydrazine concentration of 0.8 M and reduction temperature of $50^{\circ}C$.

Characteristics of MOCVD Cobalt on ALD Tantalum Nitride Layer Using $H_2/NH_3$ Gas as a Reactant

  • 박재형;한동석;문대용;윤돈규;박종완
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.377-377
    • /
    • 2012
  • Microprocessor technology now relies on copper for most of its electrical interconnections. Because of the high diffusivity of copper, Atomic layer deposition (ALD) $TaN_x$ is used as a diffusion barrier to prevent copper diffusion into the Si or $SiO_2$. Another problem with copper is that it has weak adhesion to most materials. Strong adhesion to copper is an essential characteristic for the new barrier layer because copper films prepared by electroplating peel off easily in the damascene process. Thus adhesion-enhancing layer of cobalt is placed between the $TaN_x$ and the copper. Because, cobalt has strong adhesion to the copper layer and possible seedless electro-plating of copper. Until now, metal film has generally been deposited by physical vapor deposition. However, one draw-back of this method is poor step coverage in applications of ultralarge-scale integration metallization technology. Metal organic chemical vapor deposition (MOCVD) is a good approach to address this problem. In addition, the MOCVD method has several advantages, such as conformal coverage, uniform deposition over large substrate areas and less substrate damage. For this reasons, cobalt films have been studied using MOCVD and various metal-organic precursors. In this study, we used $C_{12}H_{10}O_6(Co)_2$ (dicobalt hexacarbonyl tert-butylacetylene, CCTBA) as a cobalt precursor because of its high vapor pressure and volatility, a liquid state and its excellent thermal stability under normal conditions. Furthermore, the cobalt film was also deposited at various $H_2/NH_3$ gas ratio(1, 1:1,2,6,8) producing pure cobalt thin films with excellent conformality. Compared to MOCVD cobalt using $H_2$ gas as a reactant, the cobalt thin film deposited by MOCVD using $H_2$ with $NH_3$ showed a low roughness, a low resistivity, and a low carbon impurity. It was found that Co/$TaN_x$ film can achieve a low resistivity of $90{\mu}{\Omega}-cm$, a low root-mean-square roughness of 0.97 nm at a growth temperature of $150^{\circ}C$ and a low carbon impurity of 4~6% carbon concentration.

  • PDF

A topological metal at the surface of an ultrathin BiSb alloy film

  • Hirahara, T.;Sakamoto, Y.;Saisyu, Y.;Miyazaki, H.;Kimura, S.;Okuda, T.;Matsuda, I.;Murakami, S.;Hasegawa, S.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.14-15
    • /
    • 2010
  • Recently there has been growing interest in topological insulators or the quantum spin Hall (QSH) phase, which are insulating materials with bulk band gaps but have metallic edge states that are formed topologically and robust against any non-magnetic impurity [1]. In a three-dimensional material, the two-dimensional surface states correspond to the edge states (topological metal) and their intriguing nature in terms of electronic and spin structures have been experimentally observed in bulk Bi1-xSbx single crystals [2,3,4]. However, if we want to know the transport properties of these topological metals, high purity samples as well as very low temperature will be needed because of the contribution from bulk states or impurity effects. In a recent report, it was also shown that an intriguing coupling between the surface and bulk states will occur [5]. A simple solution to this bothersome problem is to prepare a topological metal on an ultrathin film, in which the surface-to-bulk ratio is drastically increased. Therefore in the present study, we have investigated if there is a method to make an ultrathin Bi1-xSbx film on a semiconductor substrate. From reflection high-energy electron diffraction observation, it was found that single crystal Bi1-xSbx films (0${\sim}30\;{\AA}A$ can be prepared on Si(111)-$7{\times}7$. The transport properties of such films were characterized by in situ monolithic micro four-point probes [6]. The temperature dependence of the resistivity for the x=0.1 samples was insulating when the film thickness was $240\;{\AA}A$. However, it became metallic as the thickness was reduced down to $30\;{\AA}A$, indicating surface-state dominant electrical conduction. Figure 1 shows the Fermi surface of $40\;{\AA}A$ thick Bi0.92Sb0.08 (a) and Bi0.84Sb0.16 (b) films mapped by angle-resolved photoemission spectroscopy. The basic features of the electronic structure of these surface states were shown to be the same as those found on bulk surfaces, meaning that topological metals can be prepared at the surface of an ultrathin film. The details will be given in the presentation.

  • PDF

Noble metal catalytic etching법으로 제조한 실리콘 마이크로와이어 태양전지 (The Si Microwire Solar Cell Fabricated by Noble Metal Catalytic Etching)

  • 김재현;백성호;최호진
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 추계학술대회 논문집
    • /
    • pp.278-278
    • /
    • 2009
  • A photovoltaic device consisting of arrays of radial p-n junction wires enables a decoupling of the requirements for light absorption and carrier extraction into orthogonal spatial directions. Each individual p-n junction wire in the cell is long in the direction of incident light, allowing for effective light absorption, but thin in orthogonal direction, allowing for effective carrier collection. To fabricate radial p-n junction solar cells, p or n-type vertical Si wire cores need to be produced. The majority of Si wires are produced by the vapor-liquid-solid (VLS) method. But contamination of the Si wires by metallic impurities such as Au, which is used for metal catalyst in the VLS technique, results in reduction of conversion efficiency of solar cells. To overcome impurity issue, top-down methods like noble metal catalytic etching is an excellent candidate. We used noble metal catalytic etching methods to make Si wire arrays. The used noble metal is two; Au and Pt. The method is noble metal deposition on photolithographycally defined Si surface by sputtering and then etching in various BOE and $H_2O_2$ solutions. The Si substrates were p-type ($10{\sim}20ohm{\cdot}cm$). The areas that noble metal was not deposited due to photo resist covering were not etched in noble metal catalytic etching. The Si wires of several tens of ${\mu}m$ in height were formed in uncovered areas by photo resist. The side surface of Si wires was very rough. When the distance of Si wires is longer than diameter of that Si nanowires are formed between Si wires. Theses Si nanowires can be removed by immersing the specimen in KOH solution. The optimum noble metal thickness exists for Si wires fabrication. The thicker or the thinner noble metal than the optimum thickness could not show well defined Si wire arrays. The solution composition observed in the highest etching rate was BOE(16.3ml)/$H_2O_2$(0.44M) in Au assisted chemical etching method. The morphology difference was compared between Au and Pt metal assisted chemical etching. The efficiencies of radial p-n junction solar Cells made of the Si wire arrays were also measured.

  • PDF

Au/Au-Sn 이종접합 적용 레이저 패키징을 통한 Vapor Cell 신뢰성 연구 (Study on Reliability of Vapor Cell by Laser Packaging with Au/Au-Sn Heterojunction)

  • 권진구;전용민;김지영;이은별;이성의
    • 한국전기전자재료학회논문지
    • /
    • 제33권5호
    • /
    • pp.367-372
    • /
    • 2020
  • As packaging processes for atomic gyroscope vapor cells, the glass tube tip-off process, anodic bonding, and paste sealing have been widely studied. However, there are stability issues in the alkali metal which are caused by impurity elements and leakage during high-temperature processes. In this study, we investigated the applicability of a vapor cell low-temperature packaging process by depositing Au on a Pyrex cell in addition to forming an Au-Sn thin film on a cap to cover the cell, followed by laser irradiation of the Au/Au-Sn interface. The mechanism of the thin film bonding was evaluated by XRD, while the packaging reliability of an Ne gas-filled vapor cell was characterized by variation of plasma discharge behavior with time. Furthermore, we confirmed that the Rb alkaline metal inside the vapor cell showed no color change, indicating no oxidation occurred during the process.