Browse > Article
http://dx.doi.org/10.5516/NET.06.2014.015

PARTICLE SIZE-DEPENDENT PULVERIZATION OF B4C AND GENERATION OF B4C/STS NANOPARTICLES USED FOR NEUTRON ABSORBING COMPOSITES  

Kim, Jaewoo (Nuclear Materials Research Division)
Jun, Jiheon (Department of Materials Science and Engineering, The Ohio State University)
Lee, Min-Ku (Nuclear Materials Research Division)
Publication Information
Nuclear Engineering and Technology / v.46, no.5, 2014 , pp. 675-680 More about this Journal
Abstract
Pulverization of two different sized micro-$B_4C$ particles (${\sim}10{\mu}m$ and ${\sim}150{\mu}m$) was investigated using a STS based high energy ball milling system. Shapes, generation of the impurities, and reduction of the particle size dependent on milling time and initial particle size were investigated using various analytic tools including SEM-EDX, XRD, and ICP-MS. Most of impurity was produced during the early stage of milling, and impurity content became independent on the milling time after the saturation. The degree of particle size reduction was also dependent on the initial $B_4C$ size. It was found that the STS nanoparticles produced from milling is strongly bounded with the $B_4C$ particles forming the $B_4C$/STS composite particles that can be used as a neutron absorbing nanocomposite. Based on the morphological evolution of the milled particles, a schematic pulverization model for the $B_4C$ particles was constructed.
Keywords
Boron Carbide; Neutron Absorber; Pulverization; Nanoparticles; Ceramic-metal Composite;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 A.K. Suri, C. Subramanian, J.K. Sonber, T.S.R.Ch. Murthy, "Synthesis and consolidation of boron carbide: a review." Inter. Mater. Rev., 55, 4-10 (2010).   DOI
2 S. Glasstone, A. Sesonske, Nuclear Reactor Engineering, 3rd ed., Krieger Publishing Company, Florida (1981).
3 A.H. Wells, J.S. Hobbs, "Neutron transmission through Boral: Impact of channeling on criticality." 1011819, EPRI (2005).
4 S.E. Turner, "Reactivity effects of streaming between discrete boron carbide particles in neutron absorber panels for storage or transport of spent nuclear fuel." Nucl. Sci. Eng., 151, 344-347 (2005).   DOI
5 V.A. Artem'ev, "Estimate of neutron attenuation and moderation by nanostructural materials." Atom. Energy, 94 282-285 (2003).
6 Y.R. Uhm, J. Kim, J. Jung, C.K. Rhee, "Fabrications of PVA coated nano-$B_4C$ reinforced HDPE composites." Mod. Phys. Lett. B, 23, 3931-3936 (2009).
7 C. Wang, F. Haung, Y. Jiang, Y. Zhou, L. Du, "A novel resistant SiC/$B_4C$/C nanocompsote deride from a carboranecontaining conjugated polycarbosilane." J. Am. Ceram. Soc., 95, 71-74 (2012).   DOI
8 Z. Zhang, T. Topping, Y. Li, R. Vogt, Y. Zhou, C. Haines, J. Paras, D. Kapoor, J.M. Schoenung, E.J. Lavernia, "Mechanical behavior of ultrafine-grained Al composites reinforced with $B_4C$ nanoparticles." Scr. Mater., 65, 652-655 (2011).   DOI
9 E. Taheri-Nassaj, A. Alizadeh, "Effect of milling and $B_4C$ nanoparticles on the mechanical properties nanostructured aluminum composites produced by mechanical milling and hot extrusion." Adv. Mater. Res., 383-390, 2733-2736 (2012).
10 E.M. Sharifi, F. Karimzadeh, M.H. Enayati, "Fabrication and evaluation of mechanical and tribological properties of boron carbide reinforced aluminum matrix nanocomposites." Mater. Des., 32, 3263-3271 (2011).   DOI
11 B. Chang, B.L. Gersten, S.T. Szewczyk, J.W. Adams, "Characterization of boron carbide nanoparticles prepared by a solid state thermal reaction." Appl. Phys. A, 86, 83-87 (2007).
12 S.W Du, A.I.Y. Tok, F.Y.C. Boey, "RF plasma synthesis of boron carbide nanoparticles." Diff. Def. Data pt. B: Solid State Phenom., 136, 23-38 (2008).   DOI
13 L. Shi, Y. Gu, L, Chen, Y. Qian, Z, Yang, J. Ma, "A low temperature synthesis of crystalline $B_4C$ ultrafine powders." Solid State Commun., 128, 5-7 (2003).   DOI
14 M. Bereznai, P. Heszler, Z. Toth, O. Wilhelmsson, M. Boman, "Measurements of nanoparticle size and distribution produced by laser ablation of tungsten and boron-carbide in $N_2$ ambient." Appl. Surf. Sci., 252, 4368-4372 (2006).   DOI
15 L. Tong, R.G. Reddy, "The processing of nanopowders by thermal plasma technology." JOM 58, 62-66 (2006).
16 A. Najafi, F. Golestani-Fard, H.R. Rezaie, N. Ehsani, "A novel routr to obtain B4C nano powder via sol-gel method." Ceram. Internat., 38, 3583-3589 (2012).   DOI
17 A.S. Ramos, S.P. Taguchi, E.C.T. Ramos, V.L. Arantes, S. Ribeiro, "High-energy ball milling of powder B-C mixtures." Mater. Sci. Eng. A, 422, 184-188 (2006).   DOI
18 F. Deng, H.-Y. Xie, L. Wang, "Synthesis of submicron $B_4C$ by mechanochemcial method." Mater. Lett., 60, 1771-1773 (2006).   DOI   ScienceOn
19 E. M. Sharifi, F. Karimzadeh, M.H. Enayati, "Mechanochemical assisted synthesis of $B_4C$ nanoparticles." Adv. Powder Technol., 22, 354-358 (2011).   DOI
20 M.W. Mortensen, P.G. Sorensen, O Bjorkdahl, M.R. Jensen, H.J.G. Gundersen, T. Bjornholm, "Preparation and characterization of boron carbide nanoparticles for use as a novel agent in T cell-guided boron neuron capture therapy." Appl Radiat. Isot., 64, 315-324 (2006).   DOI   ScienceOn
21 G.A. Baglyuk, S.G. Napara-Volgina, V.I. Vol'fman, A.A. Mamonova, S.G. Pyatachuk, "Thermal synthesis of Fe-$B_4C$ powder master alloys." Powder Metall. Met. Ceram., 48, 7-8 (2009).
22 G.A. Baglyuk, S.G. Pyatachuk, V.M. Dyadyun, M.E. Golovkova, "Grinding of Fe-$B_4C$ powder charge in an inertial cone mill." Powder Metall. Met. Ceram., 47, 260-263 (2008).   DOI
23 Y. Choi, B.M. Moon, D.-S. Shon, "Fabrication of Gd containing duplex stainless steel sheet for neutron absorbing structural materials." Nucl. Eng. Technol., 45, 689-694 (2013).   과학기술학회마을   DOI
24 C. Suryanarayana, "Mechanical alloying and milling." Prog. Mater. Sci., 46, 1-184 (2011).   DOI