DOI QR코드

DOI QR Code

The Effect of Mg/W Addition on the Metal-insulator Transition of VO2 Using Spark Plasma Sintering

통전활성소결법으로 제조한 VO2의 금속-절연체 전이 특성에 W와 Mg 첨가가 미치는 영향

  • Jin, Woochan (Department of Materials Science and Engineering, Seoul National University) ;
  • Kim, Youngjin (Department of Materials Science and Engineering, Seoul National University) ;
  • Park, Chan (Department of Materials Science and Engineering, Seoul National University) ;
  • Jang, Hyejin (Department of Materials Science and Engineering, Seoul National University)
  • 진우찬 (서울대학교 재료공학부) ;
  • 김영진 (서울대학교 재료공학부) ;
  • 박찬 (서울대학교 재료공학부) ;
  • 장혜진 (서울대학교 재료공학부)
  • Received : 2022.12.20
  • Accepted : 2022.12.30
  • Published : 2022.12.30

Abstract

Vanadium dioxide shows a unique and interesting property of metal-insulator transition, which has attracted great attention from the viewpoints of fundamental materials science and industrial applications. In this study, the effect of Mg and W addition on the metal-insulator transition of VO2 were investigated for the bulk materials that are prepared by spark plasma sintering. The X-ray diffraction analysis of the sintered specimens revealed that the lattice parameters barely change, and the secondary phases are present. The transition temperature of MIT appears in the range of 64.2-64.6℃, regardless of the impurity element and content. On the other hand, the addition of Mg and W alters the electrical conductivity, i.e., the electrical conductivity increases by a factor of up to 2.4 or decrease by a factor of up to 57.4 depending on the impurity type and its content. The thermal conductivity showed the values of 1.8~2.5 W/m·K below the transition temperature, and the values of 1.9~2.8 W/m·K above the transition temperature. These changes in electrical and thermal conductivities can be attributed to the combination of the change in charge carrier density, the impurities as scattering centers, and the change in microstructures.

이산화 바나듐은 금속-절연체 전이라는 독특한 특성으로 인해 기초적인 소재 연구 및 산업에의 응용을 위한 연구가 꾸준하게 진행되고 있다. 본 연구에서는 통전활성소결법으로 제조한 이산화 바나듐의 금속-절연체 전이 특성에 마그네슘과 텅스텐 첨가가 미치는 영향을 연구하였으며, 덩어리 시편을 대상으로 그 거동을 고찰하였다. 상용 분말과 통전활성소결법을 이용하여 열처리를 진행하여 제작한 시편의 경우 격자 상수의 변화는 크지 않고 이차상이 존재하였으며, 이로 인해 상전이 온도는 64.2-64.6℃에 분포하는 것으로 나타났다. 반면 불순물의 종류와 함량에 따라 전기전도도는 최대 2.4배 증가하거나 최대 57.4배 감소하는 거동을 나타냈다. 열전도도는 불순물의 첨가에 따라 증가하는 거동을 나타냈으며, 상전이 온도 이전에서는 1.8~2.5 W/m·K, 성전이 온도 이후에서는 1.9~2.8 W/m·K의 값을 가졌다. 이러한 물성 변화는 불순물의 첨가로 인한 전하 나르개 농도의 변화, 불순물의 산란중심, 미세구조의 변화 등이 복합적으로 작용한 결과로 해석할 수 있다.

Keywords

Acknowledgement

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(NRF-2021R1A4A1052035).

References

  1. F. Morin, "Oxides which show a metal-to-insulator transition at the Neel temperature", Phys. Rev. Lett., 3(1), 34 (1959). https://doi.org/10.1103/PhysRevLett.3.34
  2. K. Kosuge, "The Phase Transition in VO2", J. Phys. Soc. Jpn., 22(2), 551 (1967). https://doi.org/10.1143/JPSJ.22.551
  3. J. B. Goodenough, "The two components of the crystallographic transition in VO2", J. Solid State Chem., 3(4), 490-500 (1971). https://doi.org/10.1016/0022-4596(71)90091-0
  4. B. Hu, Y. Ding, W. Chen, D. Kulkarni, Y. Shen, V. V. Tsukruk, and Z. L. Wang, "External-Strain Induced Insulating Phase Transition in VO2 Nanobeam and Its Application as Flexible Strain Sensor", Adv. Mater., 22(45), 5134-5139 (2010). https://doi.org/10.1002/adma.201002868
  5. C. H. Neuman, A. W. Lawson, and R. F. Brown, "Pressure Dependence of Resistance of VO2", J. Chem. Phys., 41(6), 1591-1595 (1964). https://doi.org/10.1063/1.1726128
  6. T. Yajima, T. Nishimura, and A. Toriumi, "Positive-bias gate-controlled metal-insulator transition in ultrathin VO2 channels with TiO2 gate dielectrics", Nat. Commun., 6(1), 1-9 (2015).
  7. S. H. Bae, S. Lee, H. Koo, L. Lin, B. H. Jo, C. Park, and Z. L. Wang, "The Memristive Properties of a Single VO2 Nanowire with Switching Controlled by Self-Heating", Adv. Mater., 25(36), 5098-5103 (2013). https://doi.org/10.1002/adma.201302511
  8. H. Wang, X. Yi, and Y. Li, "Fabrication of VO2 films with low transition temperature for optical switching applications", Opt. Commun., 256(4-6), 305-309 (2005). https://doi.org/10.1016/j.optcom.2005.07.005
  9. C. Granqvist, "Window coatings for the future", Thin Solid Films, 193, 730-741 (1990). https://doi.org/10.1016/0040-6090(90)90225-3
  10. H. C. Lu, S. Clark, Y. Z. Guo, and J. Robertson, "The metal-insulator phase change in vanadium dioxide and its applications", J. Appl. Phys., 129(24), 240902 (2021). https://doi.org/10.1063/5.0027674
  11. H. Wriedt, "The OV (oxygen-vanadium) system", Bulletin of Alloy Phase Diagrams, 10(3), 271-277 (1989). https://doi.org/10.1007/BF02877512
  12. S.-Y. Li, G. A. Niklasson, and C.-G. Granqvist, "Thermochromic fenestration with VO2-based materials: Three challenges and how they can be met", Thin Solid Films, 520(10), 3823-3828 (2012). https://doi.org/10.1016/j.tsf.2011.10.053
  13. J. Jian, X. Wang, L. Li, M. Fan, W. Zhang, J. Huang, Z. Qi, and H. Wang, "Continuous tuning of phase transition temperature in VO2 thin films on c-cut sapphire substrates via strain variation", ACS Appl. Mater. Inter., 9(6), 5319-5327 (2017). https://doi.org/10.1021/acsami.6b13217
  14. B. Chamberland, "The hydrothermal synthesis of V2O4-xFx derivatives", Mater. Res. Bull., 6(6), 425-432 (1971). https://doi.org/10.1016/0025-5408(71)90019-5
  15. Y. Xue and S. Yin, "Element doping: a marvelous strategy for pioneering the smart applications of VO2", Nanoscale, 14(31), 11054-11097 (2022). https://doi.org/10.1039/D2NR01864K
  16. Y. Cui, Y. Ke, C. Liu, Z. Chen, N. Wang, L. Zhang, Y. Zhou, S. Wang, Y. Gao, and Y. Long, "Thermochromic VO2 for energy-efficient smart windows", Joule, 2(9), 1707-1746 (2018). https://doi.org/10.1016/j.joule.2018.06.018
  17. K. Liu, S. Lee, S. Yang, O. Delaire, and J. Wu, "Recent progresses on physics and applications of vanadium dioxide", Mater. Today, 21(8), 875-896 (2018). https://doi.org/10.1016/j.mattod.2018.03.029
  18. C. Gomez-Heredia, J. Ramirez-Rincon, D. Bhardwaj, P. Rajasekar, I. Tadeo, J. Cervantes-Lopez, J. Ordonez-Miranda, O. Ares, A. Umarji, and J. Drevillon, "Measurement of the hysteretic thermal properties of W-doped and undoped nanocrystalline powders of VO2", Sci. Rep., 9(1), 1-14 (2019). https://doi.org/10.1038/s41598-018-37186-2
  19. H. M. Barra, S. K. Chen, N. Tamchek, Z. A. Talib, O. J. Lee, and K. B. Tan, "Phase, Microstructure, Thermochromic, and Thermophysical Analyses of Hydrothermally Synthesized W-Doped VO2 Nanopowder", Adv. Mater. Sci. Eng., 2021 (2021).
  20. O. Guillon, J. Gonzalez-Julian, B. Dargatz, T. Kessel, G. Schierning, J. Rathel, and M. Herrmann, "Field-assisted sintering technology/spark plasma sintering: mechanisms, materials, and technology developments", Adv. Eng. Mater., 16(7), 830-849 (2014). https://doi.org/10.1002/adem.201300409
  21. K. Kato, J. Lee, A. Fujita, T. Shirai, and Y. Kinemuchi, "Influence of strain on latent heat of VO2 ceramics", J. Alloy Compd., 751, 241-246 (2018). https://doi.org/10.1016/j.jallcom.2018.04.094
  22. H. Rollinson and J. Adetunji, "Ionic Radii", in Encyclopedia of Geochemistry: A Comprehensive Reference Source on the Chemistry of the Earth, W. M. White, pp.738-743, Springer International Publishing (2018).
  23. C. Kim, J. Shin, and H. Ozaki, "Effect of W doping in metal-insulator transition material VO2 by tunnelling spectroscopy", J. Phys.-Condens. Mat., 19(9), 096007 (2007). https://doi.org/10.1088/0953-8984/19/9/096007
  24. S. Behera and R. Sarkar, "Sintering of magnesia: effect of additives", B. Mater. Sci., 38(6), 1499-1505 (2015). https://doi.org/10.1007/s12034-015-0962-4
  25. J. Ordonez-Miranda, Y. Ezzahri, K. Joulain, J. Drevillon, and J. Alvarado-Gil, "Modeling of the electrical conductivity, thermal conductivity, and specific heat capacity of VO2", Phys. Rev. B, 98(7), 075144 (2018). https://doi.org/10.1103/physrevb.98.075144
  26. S. Chen, J. Liu, L. Wang, H. Luo, and Y. Gao, "Unraveling mechanism on reducing thermal hysteresis width of VO2 by Ti doping: a joint experimental and theoretical study", J. Phys. Chem. C, 118(33), 18938-18944 (2014). https://doi.org/10.1021/jp5056842
  27. C. Ling, Z. Zhao, X. Hu, J. Li, X. Zhao, Z. Wang, Y. Zhao, and H. Jin, "W doping and voltage driven metal-insulator transition in VO2 nano-films for smart switching devices", ACS Applied Nano Materials, 2(10), 6738-6746 (2019). https://doi.org/10.1021/acsanm.9b01640
  28. E. Strelcov, A. Tselev, I. Ivanov, J. D. Budai, J. Zhang, J. Z. Tischler, I. Kravchenko, S. V. Kalinin, and A. Kolmakov, "Doping-based stabilization of the M2 phase in free-standing VO2 nanostructures at room temperature", Nano Lett., 12(12), 6198-6205 (2012). https://doi.org/10.1021/nl303065h
  29. J. Zhou, Y. Gao, X. Liu, Z. Chen, L. Dai, C. Cao, H. Luo, M. Kanahira, C. Sun, and L. Yan, "Mg-doped VO2 nanoparticles: hydrothermal synthesis, enhanced visible transmittance and decreased metal-insulator transition temperature", Phys. Chem. Chem. Phys., 15(20), 7505-7511 (2013). https://doi.org/10.1039/c3cp50638j
  30. V. Eyert, "The metal-insulator transitions of VO2: A band theoretical approach", Annalen der Physik, 514(9), 650-704 (2002). https://doi.org/10.1002/andp.20025140902
  31. R. H. Bube, Electrons in solids: an introductory survey, pp. 179, Academic press (1992).
  32. K. Dahal, Q. Zhang, R. He, I. K. Mishra, and Z. Ren, "Thermal conductivity of (VO2)1-xcux composites across the phase transition temperature", J. Appl. Phys., 121(15), 155103 (2017). https://doi.org/10.1063/1.4981241
  33. C. Berglund and H. Guggenheim, "Electronic Properties of VO2 near the Semiconductor-Metal Transition", Phys. Rev., 185(3), 1022 (1969). https://doi.org/10.1103/PhysRev.185.1022
  34. H. Kizuka, T. Yagi, J. Jia, Y. Yamashita, S. Nakamura, N. Taketoshi, and Y. Shigesato, "Temperature dependence of thermal conductivity of VO2 thin films across metal-insulator transition", Jpn. J. Appl. Phys., 54(5), 053201 (2015). https://doi.org/10.7567/JJAP.54.053201
  35. L. Song and J. W. Evans, "Measurements of the thermal conductivity of lithium polymer battery composite cathodes", J. Electrochem. Soc., 146(3), 869 (1999). https://doi.org/10.1149/1.1391694
  36. N. Burger, A. Laachachi, M. Ferriol, M. Lutz, V. Toniazzo, and D. Ruch, "Review of thermal conductivity in composites: Mechanisms, parameters and theory", Prog. Ploym. Sci., 61, 1-28 (2016). https://doi.org/10.1016/j.progpolymsci.2016.05.001
  37. J. Chen, X. Liu, X. Yuan, Y. Zhang, Y. Gao, Y. Zhou, R. Liu, L. Chen, and N. Chen, "Investigation of the thermal conductivities across metal-insulator transition in polycrystalline VO2", Chinese Sci. Bull., 57(26), 3393-3396 (2012). https://doi.org/10.1007/s11434-012-5294-9
  38. V. Andreev, F. Chudnovskij, A. Petrov, and E. Terukov, "Thermal conductivity of VO2, V3O5, and V2O3", Physica Status Solidi. A, Applied Research, 48(2), K153-K156 (1978). https://doi.org/10.1002/pssa.2210480257
  39. D. Li, Q. Wang, and X. Xu, "Thermal Conductivity of VO2 Nanowires at Metal-Insulator Transition Temperature", Nanomaterials, 11, 2428 (2021). https://doi.org/10.3390/nano11092428