Browse > Article
http://dx.doi.org/10.4313/JKEM.2020.33.5.367

Study on Reliability of Vapor Cell by Laser Packaging with Au/Au-Sn Heterojunction  

Kwon, Jin Gu (Department of Materials Engineering, Korea Polytechnic University)
Jeon, Yong Min (Department of Materials Engineering, Korea Polytechnic University)
Kim, Ji Young (Department of Materials Engineering, Korea Polytechnic University)
Lee, Eun Byeol (Department of Materials Engineering, Korea Polytechnic University)
Lee, Seong Eui (Department of Materials Engineering, Korea Polytechnic University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.33, no.5, 2020 , pp. 367-372 More about this Journal
Abstract
As packaging processes for atomic gyroscope vapor cells, the glass tube tip-off process, anodic bonding, and paste sealing have been widely studied. However, there are stability issues in the alkali metal which are caused by impurity elements and leakage during high-temperature processes. In this study, we investigated the applicability of a vapor cell low-temperature packaging process by depositing Au on a Pyrex cell in addition to forming an Au-Sn thin film on a cap to cover the cell, followed by laser irradiation of the Au/Au-Sn interface. The mechanism of the thin film bonding was evaluated by XRD, while the packaging reliability of an Ne gas-filled vapor cell was characterized by variation of plasma discharge behavior with time. Furthermore, we confirmed that the Rb alkaline metal inside the vapor cell showed no color change, indicating no oxidation occurred during the process.
Keywords
Thin film packaging; Au/Au-Sn; Heterojunction; Laser bonding; Vapor cell;
Citations & Related Records
연도 인용수 순위
  • Reference
1 W. B. Choi, B. K. Ju, Y. H. Lee, J. W. Jeong, M. R. Haskard, N. Y. Lee, M. Y. Sung, and M. H. Oh, J. Micromech. Microeng., 7, 316 (1997). [DOI: https://doi.org/10.1088/0960-1317/7/4/007]   DOI
2 A.C.A. Muller, K. L. Scrivener, J. Skibsted, A. M. Gajewicz, and P. J. McDonald, Cem. Concr. Res., 74, 116 (2015). [DOI: https://doi.org/10.1016/j.cemconres.2015.04.005]   DOI
3 N. Arora and B. R. Jagirdar, Phys. Chem. Chem. Phys., 16, 11381 (2014). [DOI: https://doi.org/10.1039/c4cp00249k]   DOI
4 Z. Fang, X. Mao, J. Yang, and F. Yang, J. Micromech. Microeng., 23, 095008 (2013). [DOI: https://doi.org/10.1088/0960-1317/23/9/095008]   DOI
5 M. L. Huang, F. F. Huang, J. L. Pan, and T. X. Zhang, J. Mater. Sci.: Mater. Electron., 25, 4933 (2014). [DOI: https://doi.org/10.1007/s10854-014-2254-y]   DOI
6 K. Yu, T. Yao, Z. Pan, S. Wei, and Y. Xie, Dalton Trans., 46, 10353 (2009). [DOI: https://doi.org/10.1039/b916215a]
7 Y. Zhang and D. G. Ivey, Proc. 2003 International Conference on Compound Semiconductor Mfg. (GaAsMANTECH, Inc., 2003) p. 2.
8 K. Nogita, C. M. Gourlay, S. D. McDonald, S. Suenaga, J. Read, G. Zeng, and Q. F. Gu, J. Philos. Mag., 93, 3627, (2013). [DOI: https://doi.org/10.1080/14786435.2013.820381]
9 W. S. Boyle and P. Kisliuk, Phys. Rev., 97, 255 (1955). [DOI: https://doi.org/10.1103/PhysRev.97.255]   DOI
10 J. C. Biswas and V. Mitra, Appl. Phys., 19, 377 (1979). [DOI: https://doi.org/10.1007/BF00930100]   DOI
11 M. Succi, R. Canino, and B. Ferrario, Vacuum, 35, 579 (1985). [DOI: https://doi.org/10.1016/0042-207X(85)90319-7]   DOI
12 D. G. Theodorou, R. O. McIntosh, T. H. Conklin, and K. C. Earl, Vacuum, 16, 237 (1966). [DOI: https://doi.org/10.1016/0042-207X(66)92713-8]   DOI
13 S. J. Jung, K. J. Woo, N. Y. Lee, S. Ahn, G. J. Moon, K. S. Kim, and M. S. Kim, J. Korean Vac. Sci. Technol., 3, 95 (1999).