Browse > Article
http://dx.doi.org/10.12989/anr.2017.5.4.359

Synthesis of metallic copper nanoparticles and metal-metal bonding process using them  

Kobayashi, Yoshio (Department of Biomolecular Functional Engineering, College of Engineering, Ibaraki University)
Nakazawa, Hiroaki (Department of Biomolecular Functional Engineering, College of Engineering, Ibaraki University)
Maeda, Takafumi (Department of Biomolecular Functional Engineering, College of Engineering, Ibaraki University)
Yasuda, Yusuke (Hitachi Research Laboratory, Hitachi Ltd.)
Morita, Toshiaki (Hitachi Research Laboratory, Hitachi Ltd.)
Publication Information
Advances in nano research / v.5, no.4, 2017 , pp. 359-372 More about this Journal
Abstract
Metallic copper nanoparticles were synthesised by reduction of copper ions in aqueous solution, and metal-metal bonding by using the nanoparticles was studied. A colloid solution of metallic copper nanoparticles was prepared by mixing an aqueous solution of $CuCl_2$ (0.01 M) and an aqueous solution of hydrazine (reductant) (0.2-1.0 M) in the presence of 0.0005 M of citric acid and 0.005 M of n-hexadecyltrimethylammonium bromide (stabilizers) at reduction temperature of $30-80^{\circ}C$. Copper-particle size varied (in the range of ca. 80-165 nm) with varying hydrazine concentration and reduction temperature. These dependences of particle size are explained by changes in number of metallic-copper-particle nuclei (determined by reduction rate) and changes in collision frequency of particles (based on movement of particles in accordance with temperature). The main component in the nanoparticles is metallic copper, and the metallic-copper particles are polycrystalline. Metallic-copper discs were successfully bonded by annealing at $400^{\circ}C$ and pressure of 1.2 MPa for 5 min in hydrogen gas with the help of the metalli-ccopper particles. Shear strength of the bonded copper discs was then measured. Dependences of shear strength on hydrazine concentration and reduction temperature were explained in terms of progress state of reduction, amount of impurity and particle size. Highest shear strength of 40.0 MPa was recorded for a colloid solution prepared at hydrazine concentration of 0.8 M and reduction temperature of $50^{\circ}C$.
Keywords
metal nanoparticle; nano-particles; nanosized metals; chemical synthesis; nano-materials;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Abtewa, M. and Selvaduray, G. (2000), "Lead-free solders in microelectronics", Mater. Sci. Eng., 27(5-6), 95-141.   DOI
2 Argueta-Figueroa, L., Morales-Luckie, R.A., Scougall-Vilchis, R. and Olea-Mejia, O.F. (2014), "Synthesis, characterization and antibacterial activity of copper, nickel and bimetallic Cu-Ni nanoparticles for potential use in dental materials", Prog. Nat. Sci., 24(4), 321-328.   DOI
3 Bai, J.G., Zhang, Z.Z., Calata, J.N. and Lu, G.Q. (2006), "Low-temperature sintered nanoscale silver as a novel semiconductor device-metallized substrate interconnect material", IEEE Trans. Compon. Pack. Technol., 29(3), 589-593.   DOI
4 Kobayashi, Y., Shirochi, T., Maeda, T., Yasuda, Y. and Morita, T. (2013b), "Microstructure of metallic copper nanoparticles/metallic disc interface in metal-metal bonding using them", Surf. Interf. Anal., 45(9), 1424-1428.   DOI
5 Kobayashi, Y., Abe, Y., Maeda, T., Yasuda, Y. and Morita, T. (2014), "A Metal-metal bonding process using metallic copper nanoparticles produced by reduction of copper oxide nanoparticles", J. Mater. Res. Technol., 3(2), 114-121.   DOI
6 Kobayashi, Y., Maeda, T., Yasuda, Y. and Morita, T. (2016), "Metal-metal bonding process using cuprous oxide nanoparticles", J. Mater. Res. Technol., 5(4), 345-352.   DOI
7 Kotadia, H.R., Howes, P.D. and Mannan, S.H. (2014), "A review: On the development of low melting temperature Pb-free solders", Microelectron. Reliab., 54(6-7), 1253-1273.   DOI
8 Lee, K.S. and Kwon, Y.-N. (2013), "Solid-state bonding between Al and Cu by vacuum hot pressing", Trans. Nonferrous Met. Soc. China, 23(2), 341-346.   DOI
9 Lu, G.-Q., Yan, C., Mei, Y. and Li, X. (2015), "Dependence of electrochemical migration of sintered nanosilver on chloride", Mater. Chem. Phys., 151, 18-21.   DOI
10 Maeda, T., Nakazawa, H., Kobayashi, Y., Yasuda, Y. and Morita, T. (2014), "Effects of reductant concentration and reduction temperature in synthesis of copper nanoparticles on their metal-metal bonding properties", Sci. Lett., 8(2) 1-9.
11 Duarte, L.I., Viana, F., Ramos, A.S., Vieira, M.T., Leinenbach, C., Klotz, U.E. and Vieira, M.F. (2012), "Diffusion bonding of gamma-TiAl using modified Ti/Al nanolayers", J. Alloy. Compd., 536(S1), S424-S427.   DOI
12 Darwish, S.M., Al-Habdanb, S. and Al-Tamimia, A. (2000), "A knowledge-base for electronics soldering", J. Mater. Process. Technol., 97(1-3), 1-9.   DOI
13 Dickson, D., Liu, G., Li, C., Tachiev, G. and Cai, Y. (2012), "Dispersion and stability of bare hematite nanoparticles: Effect of dispersion tools, nanoparticle concentration, humic acid and ionic strength", Sci. Total Environ., 419, 170-177.   DOI
14 Dimic-Misic, K., Hummel, M., Paltakari, J., Sixta, H., Maloney, T. and Gane, P. (2015), "From colloidal spheres to nanofibrils: Extensional flow properties of mineral pigment and mixtures with micro and nanofibrils under progressive double layer suppression", J. Colloid Interf. Sci., 446, 31-43.   DOI
15 Hashimoto, S., Werner, D. and Uwada, T. (2012), "Studies on the interaction of pulsed lasers with plasmonic gold nanoparticles toward light manipulation, heat management, and nanofabrication", J. Photochem. Photobiol. C, 13(1), 28-54.   DOI
16 Ide, E., Angata, S., Hirose, A. and Kobayashi, K.F. (2005), "Metal-metal bonding process using Ag metalloorganic nanoparticles", Acta Mater., 53(8), 2385-2393.   DOI
17 Niranjan, M.K. and Chakraborty, J. (2012), "Synthesis of oxidation resistant copper nanoparticles in aqueous phase and efficient phase transfer of particles using alkanethiol", Colloids Surf. A, 407, 58-63.   DOI
18 Morisada, Y., Nagaoka, T., Fukusumi, M., Kashiwagi, Y., Yamamoto, M. and Nakamoto, M. (2010), "A low-temperature bonding process using mixed Cu-Ag nanoparticles", J. Electron. Mater., 39(8), 1283-1288.   DOI
19 Murray, A.J., Jaroenapibal, P., Koene, B. and Evoy, S. (2006), "Sintering of silver nanoparticles for the formation of high temperature interconnect joints", Mater. Res. Soc. Symp. Proc., 942, 0942-W08-29.
20 Nami, H., Halvaee, A., Adgi, H. and Hadian, A. (2010), "Investigation on microstructure and mechanical properties of diffusion bonded $Al/Mg_2Si$ metal matrix composite using copper interlayer", J. Mater. Process. Technol., 210(10), 1282-1289.   DOI
21 Nishikawa, H., Hirano, T., Takemoto, T. and Terada, N. (2011), "Effects of joining conditions on joint strength of Cu/Cu joint using Cu nanoparticle paste", Open Surf. Sci. J., 3, 60-64.
22 Noor, E.E.M., Sharif, N.M., Yew, C.K., Ariga, T., Ismail, A.B. and Hussain, Z. (2010), "Wettability and strength of In-Bi-Sn lead-free solder alloy on copper substrate", J. Alloy. Compd., 507(1), 290-296.   DOI
23 Shi, F.G., Abdullah, M., Chungpaiboonpatana, S., Okuyama, K., Davidson, C. and Adamsc, J.M. (1999), "Electrical conduction of anisotropic conductive adhesives: effect of size distribution of conducting filler particles", Mater. Sci. Semiconduct. Process., 2(3), 263-269.   DOI
24 Shibuta, Y. and Suzuki, T. (2010), "Melting and solidification point of fcc-metal nanoparticles with respect to particle size: A molecular dynamics study", Chem. Phys. Lett., 498(4-6), 323-327.   DOI
25 Sugimoto, T., Kobayashi, M. and Adachi, Y. (2014), "The effect of double layer repulsion on the rate of turbulent and Brownian aggregation: experimental consideration", Colloids Surf. A, 443, 418-424.   DOI
26 Ishizaki, T., Satoh, T., Kuno, A., Tane, A., Yanase, M., Osawa, F. and Yamada, Y. (2013), "Thermal characterizations of Cu nanoparticle joints for power semiconductor devices", Microelectron. Reliab., 53(9-11), 1543-1547.   DOI
27 Ji, F., Xue, S., Lou, J., Lou, Y. and Wang, S. (2012), "Microstructure and properties of Cu/Al joints brazed with Zn-Al filler metals", Trans. Nonferrous Met. Soc. China, 22(2), 281-287.   DOI
28 Shiue, R.K., Tsay, L.W. Lin, C.L. and Ou, J.L. (2003), "The reliability study of selected Sn-Zn based leadfree solders on Au/Ni-P/Cu substrate", Microelectron. Reliab., 43(3), 453-463.   DOI
29 Singh, M., Sinha, I., Premkumar, M., Singh, A.K. and Mandal, R.K. (2010), "Structural and surface plasmon behavior of Cu nanoparticles using different stabilizers", Colloids Surf. A, 359(1-3), 88-94.   DOI
30 Son, Y., Yeo, J., Ha, C.W., Lee, J., Hong, S., Nam, K.H., Yang, D.-Y. and Ko, S.H. (2012), "Application of the specific thermal properties of Ag nanoparticles to high-resolution metal patterning", Thermochim. Acta, 542, 52-56.   DOI
31 Tan, C.S., Lim, D.F., Ang, X.F., Wei, J. and Leong, K.C. (2012), "Low temperature Cu-Cu thermocompression bonding with temporary passivation of self-assembled monolayer and its bond strength enhancement", Microelectron. Reliab., 52(2), 321-324.   DOI
32 Tu, K.-N. (2007), Solder Joint Technology, Springer, New York, NY, USA.
33 Wang, Z., Wang, H. and Liu, L. (2012), "Study on low temperature brazing of magnesium alloy to aluminum alloy using Sn-xZn solders", Mater. Design, 39, 14-19.   DOI
34 Weisman, C. (1976) Welding Handbook, Volume 1, (7th Edition), American Welding Society, MI, USA.
35 Xu, L., Peng, J., Srinivasakannan, C., Chen, G. and Shen, A.Q. (2015), "Synthesis of copper nanocolloids using a continuous flowbased microreactor", Appl. Surf. Sci., 355, 1-6.   DOI
36 Kim, K.-S., Bang, J.-O. and Jung, S.-B. (2013), "Electrochemical migration behavior of silver nanopaste screen-printed for flexible and printable electronics", Curr. Appl. Phys., 13(S1), S190-S194.   DOI
37 Ji, H., Li, L. and Li, M. (2015), "Low-temperature joining of Fe-based amorphous foil with aluminum by ultrasonic-assisted soldering with Sn-based fillers", Mater. Design, 84, 254-260.   DOI
38 Joshi, R.K. (2006), "pH and temperature dependence of particle size in $Pb_{1-x}Fe_xS $ nanoparticle films", Solid State Commun., 139(5), 201-204.   DOI
39 Kikuchi, S., Nishimura, M., Suetsugu, K., Ikari, T. and Matsushige, K. (2001), "Strength of bonding interface in lead-free Sn alloy solders", Mater. Sci. Eng. A, 319-321, 475-479.   DOI
40 Kobayashi, Y., Shirochi, T., Yasuda, Y. and Morita, T. (2011), "Preparation of metallic copper nanoparticles in aqueous solution and their bonding properties", Solid State Sci., 13(3), 553-558.   DOI
41 Kobayashi, Y., Shirochi, T., Yasuda, Y. and Morita, T. (2012), "Metal-metal bonding process using metallic copper nanoparticles prepared in aqueous solution", Int. J. Adhes. Adhes., 33, 50-55.   DOI
42 Kobayashi, Y., Shirochi, T., Yasuda, Y. and Morita, T. (2013a), "Preparation of metallic copper nanoparticles by reduction of copper ions in aqueous solution and their metal-metal bonding properties", Int. J. Phys. Nat. Sci. Eng., 7(10), 150-153.
43 Zhang, L. and Tu, K.N. (2014), "Structure and properties of lead-free solders bearing micro and nano particles", Mater. Sci. Eng. R, 82, 1-32.   DOI
44 Yan, J., Zou, G., Wu, A., Ren, J., Yan, J., Hu, A. and Zhou, Y. (2012a), "Pressureless bonding process using Ag nanoparticle paste for flexible electronics packaging", Scr. Mater., 66(8), 582-585.   DOI
45 Yan, J., Zou, G., Wu, A., Ren, J., Hu, A. and Zhou, Y.N. (2012b), "Polymer-protected Cu-Ag mixed NPs for low-temperature bonding application", J. Electron. Mater., 41(7), 1886-1892.   DOI
46 Yasuda, Y., Ide, E. and Morita, T. (2009), "Low-temperature bonding using silver nanoparticles stabilized by short-chain alkylamines", Jpn. J. Appl. Phys., 48(12R), 125004.   DOI