• 제목/요약/키워드: Metal doping.

검색결과 315건 처리시간 0.028초

Gate Workfunction Optimization of a 32 nm Metal Gate MOSFET for Low Power Applications

  • Oh Yong-Ho;Kim Young-Min
    • Journal of Electrical Engineering and Technology
    • /
    • 제1권2호
    • /
    • pp.237-240
    • /
    • 2006
  • The feasibility of a midgap metal gate is investigated for a 32 nm MOSFET for low power applications. The midgap metal gate MOSFET is found to deliver $I_{on}$ as high as a bandedge gate if a proper retrograde channel is used. An adequate design of the retrograde channel is essential to achieve the performance requirement given in the ITRS roadmap. A process simulation is also run to evaluate the feasibility of the necessary retrograde profile in manufacturing environments. Based on the simulated result, it is found that any subsequent thermal process should be tightly controlled to retain transistor performance, which is achieved using the retrograde doping profile. Also, the bandedge gate MOSFET is determined be more vulnerable to the subsequent thermal processes than the midgap gate MOSFET. A guideline for gate workfunction $(\Phi_m)$ is suggested for the 32 nm MOSFET.

리튬전지용 금속황화물 전극의 전기화학적 특성에 관한 연구 (Research of Electrochemical Properties with Metal Sulfide Electrode for Lithium Batteries)

  • 유호석;김인수
    • 한국수소및신에너지학회논문집
    • /
    • 제31권1호
    • /
    • pp.138-143
    • /
    • 2020
  • Metal sulfides are good candidates for cathode materials. Especially, iron sulfides and nickel sulfides have been demonstrated to be potential electrode materials among metal sulfides due to nontoxicity and high theoretical specific capacities. Electrochemical properties (capacity, cycle life, stability etc.) of Li/iron sulfides or nickel sulfides cell were improved by methode such as coating, doping of material, and nanoization of materials etc.

Role of edge patterning and metal contact for extremely low contact resistance on graphene

  • Jo, Seo-Hyeon;Park, Hyung-Youl;Park, Jin-Hong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.294.2-294.2
    • /
    • 2016
  • Graphene, a sigle atomic layered structure of graphite, has drawn many scientific interests for attractive future electronics and optoelectronics beyond silicon-based technology because of its robust physical, optical, and electrical properties. But high metal-graphene contact resistance prevents the successful integration of high speed graphene devices and circuits, although pristine graphene is known to have a novel carrier transport property. Meanwhile, in the recently reported metal-graphene contact studies, there are many attempts to reduce the metal-graphene contact resistance, such as doping and one-dimensional edge contact. However, there is a lack of quantitative analysis of the edge contact scheme through variously designed patterns with different metal contact. We first investigate the effets of edge contact (metal-graphene interface) on the contact resistance in terms of edge pattern design through patterning (photolithography + plasma etching) and electral measurements. Where the contact resistance is determined using the transfer length method (TLM). Finally, we research the role of metal-kind (Palladium, Copper, and Tianium) on the contact resistance through the edge-contacted devices, eventually minimizing contact resistance down to approximately $23{\Omega}{\cdot}{\mu}m$ at room temperature (approximately $19{\Omega}{\cdot}{\mu}m$ at 100 K).

  • PDF

Effects of Sr Contents on Structural Change and Electrical Conductivity in Cu-doped LSM ($La_{1-x}Sr_xMn_{0.8}Cu_{0.2}O_{3{\pm}{\delta}}$)

  • 류지승;노태민;김진성;정철원;이희수
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 추계학술발표대회
    • /
    • pp.33.1-33.1
    • /
    • 2011
  • Strontium doped lanthanum manganite (LSM) with perovskite structure for SOFC cathode material shows high electrical conductivity and good chemical stability, whereas the electrical conductivity at intermediate temperature below $800^{\circ}C$ is not sufficient due to low oxygen ion conductivity. The approach to improve electrical conductivity is to make more oxygen vacancies by substituting alkaline earths (such as Ca, Sr and Ba) for La and/or a transition metal (such as Fe, Co and Cu) for Mn. Among various cathode materials, $LaSrMnCuO_3$ has recently been suggested as the potential cathode materials for solid oxide fuel cells (SOFCs). As for the Cu doping at the B-site, it has been reported that the valence change of Mn ions is occurred by substituting Cu ions and it leads to formation of oxygen vacancies. The electrical conductivity is also affected by doping element at the A-site and the co-doping effect between A-site and B-site should be described. In this study, the $La_{1-x}Sr_xMn_{0.8}Cu_{0.2}O_{3{\pm}{\delta}}$ ($0{\leq}x{\leq}0.4$) systems were synthesized by a combined EDTA-citrate complexing process. The crystal structure, morphology, thermal expansion and electrical conductivity with different Sr contents were studied and their co-doping effects were also investigated.

  • PDF

도핑 공정에서의 Pre-deposition 온도 최적화를 이용한 Solar Cell 효율 개선 (Solar Cell Efficiency Improvement using a Pre-deposition Temperature Optimization in The Solar Cell Doping Process)

  • 최성진;유진수;유권종;한규민;권준영;이희덕
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.244-244
    • /
    • 2010
  • Doping process of crystalline silicon solar cell process is very important which is as influential on efficiency of solar. Doping process consists of pre -deposition and diffusion. Each of these processes is important in the process temperature and process time. Through these process conditions variable, p-n junction depth can be controled to low and high. In this paper, we studied a optimized doping pre-deposition temperature for high solar cell efficiency. Using a $200{\mu}m$ thickness multi-crystalline silicon wafer, fixed conditions are texture condition, sheet resistance($50\;{\Omega}/sq$), ARC thickness(80nm), metal formation condition and edge isolation condition. The three variable conditions of pre-deposition temperature are $790^{\circ}C$, $805^{\circ}C$ and $820^{\circ}C$. In the $790^{\circ}C$ pre-deposition temperature, we achieved a best solar cell efficiency of 16.2%. Through this experiment result, we find a high efficiency condition in a low pre-deposition temperature than the high pre-deposition temperature. We optimized a pre-deposition temperature for high solar cell efficiency.

  • PDF

TiO2 Nano-doping Effect on Flux Pinning and Critical Current Density in an MgB2 Superconductor

  • Kang, J.H.;Park, J.S.;Lee, Y.P.;Prokhorov, V.G.
    • Journal of Magnetics
    • /
    • 제16권1호
    • /
    • pp.15-18
    • /
    • 2011
  • We have studied the $TiO_2$ doping effects on the flux pinning behavior of an $MgB_2$ superconductor synthesized by the in-situ solid-state reaction. From the field-cooled and zero-field-cooled temperature dependences of magnetization, the reversible-irreversible transition of $TiO_2$-doped $MgB_2$ was determined in the H-T diagram (the temperature dependence of upper critical magnetic field and irreversibility line). For comparison, the similar measurements are also obtained from SiC-doped $MgB_2$. The critical current density was estimated from the width of hysteresis loops in the framework of Bean's model at different temperatures. The obtained results manifest that nano-scale $TiO_2$ inclusions served as effective pinning centers and lead to the enhanced upper critical field and critical current density. It was concluded that the grain boundary pinning mechanism was realized in a $TiO_2$-doped $MgB_2$ superconductor.

Sensing Properties of Ga-doped ZnO Nanowire Gas Sensor

  • Lee, Sang Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • 제16권2호
    • /
    • pp.78-81
    • /
    • 2015
  • Pure ZnO and ZnO nanowires doped with 3 wt.% Ga (‘3GZO’) were grown by pulsed laser deposition in a furnace system. The doping of Ga in ZnO nanowires was analyzed by observing the optical and chemical properties of the doped nanowires. The diameter and length of nanowires were under 200 nm and several ${\mu}m$, respectively. Changes of significant resistance were observed and the sensitivities of ZnO and 3GZO nanowires were compared. The sensitivities of ZnO and 3GZO nanowire sensors measured at 300℃ for 1 ppm of ethanol gas were 97% and 48%, respectively.

CVD법을 이용한 그래핀합성에 미치는 온도와 압력의 영향 (Influence of Temperature and Pressure on Graphene Synthesis by Chemical Vapor Deposition)

  • 이은영;김성진;전흥우
    • 열처리공학회지
    • /
    • 제28권1호
    • /
    • pp.7-16
    • /
    • 2015
  • The fabrication of high quality graphene using chemical vapor deposition (CVD) method for application in semiconductor, display and transparent electrodes is investigated. Temperature and pressure have major impact on the growth of graphene. Graphene doping was obtained by deposition of $MoO_3$ thin films using thermal evaporator. Bilayer graphene and the metal layer graphene were obtained. According to the behavior of graphene growth P-type doping was confirmed. Graphene obtained through experiments was analyzed using optical microscopy, Raman spectroscopy, UV-visible light spectrophotometer, 4-point probe sheet resistance meter and atomic force microscopy.

Co-Deposition of Rubrene doped Alq3 film Using Belt Source Evaporation Techniques for Large Size AMOLED

  • Hwang, Chang-Hun;Ju, Sung-Hoo;Park, Myung-Hee
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권2호
    • /
    • pp.1664-1667
    • /
    • 2007
  • The belt source evaporation is for the large size AMOLED devices to re-sublimate the organic film deposited on the metal plate. Using the plane source, the PL spectrum of the doped organic film has been studied for the first time. The PL peak of the pure Alq3 film was 512nm and that of the pure Rubrene was 557nm. The PL peak of the 2% Rubrene doped Alq3 film was shifted to $536{\pm}2nm$. The PL peak wavelength measured at the front surface of the film and at the back surface of the film was measured as nearly same as that the doping ratio maintains uniform within the film thickness. In conclusion, the doping control of the organic film becomes real using the belt type plate sublimation deposition.

  • PDF

Membrane Strip형 전기전도도 면역센서 신호발생원으로써 전도성고분자 합성

  • 오규하;백세환
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2000년도 추계학술발표대회 및 bio-venture fair
    • /
    • pp.707-708
    • /
    • 2000
  • Membrane strip 면역 크로마토그래피 방법을 이용하여 정량분석을 수행하기 위해 스크린프린팅 기술에 의해 제작된 membrane 전극 상에 항체를 고정화하였고 신호발생물질로써 전도성고분자인 polyaniline이 결합된 colloidal gold를 사용하였다. 이때 사용이 적합한 전도성 고분자는 수용액에 대해 용해도가 높아야 하고 또한 면역반응 최적조건인 중성 pH에서 전기전도도를 유지할 수 있어야 한다. 이를 위해 기존의 polyaniline을 $LiPF_6$로 doping 하거나 새로운 수용성 고분자인 LEB-SPAN을 사용하여 전기전도도 측정용 면역 gold를 합성하였다.

  • PDF