Browse > Article
http://dx.doi.org/10.7316/KHNES.2020.31.1.138

Research of Electrochemical Properties with Metal Sulfide Electrode for Lithium Batteries  

RYU, HO SUK (Department of Advanced Aerospace Materials Engineering, Kyungwoon Aeronautical Institute of Technology (KAI-TECH), Kyungwoon University)
KIM, IN SOO (Department of Advanced Aerospace Materials Engineering, Kyungwoon Aeronautical Institute of Technology (KAI-TECH), Kyungwoon University)
Publication Information
Transactions of the Korean hydrogen and new energy society / v.31, no.1, 2020 , pp. 138-143 More about this Journal
Abstract
Metal sulfides are good candidates for cathode materials. Especially, iron sulfides and nickel sulfides have been demonstrated to be potential electrode materials among metal sulfides due to nontoxicity and high theoretical specific capacities. Electrochemical properties (capacity, cycle life, stability etc.) of Li/iron sulfides or nickel sulfides cell were improved by methode such as coating, doping of material, and nanoization of materials etc.
Keywords
Lithium battery; Cathode material; Metal sulfide; Nickel sulfide; Iron sulfide;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 A. Ritchie, "New cathode materials for thermal batteries", Proceedings of the 18th International Power Sources Symposium, 1993, pp. 299-312.
2 P. J. Masset, R. A. Guidotti, "Thermal activated ("thermal") battery technology: part IIIa: FeS2 cathode material", J. Power Sources, Vol. 177, No. 2, 2008, pp. 595-609, doi: https://doi.org/10.1016/j.jpowsour.2007.11.017.   DOI
3 Y. S. Choi, H. R. Yu, H. Cheong, and Y. S. Lee, "Effects of pyrite ($FeS_2$) particle sizes on electrochemical characteristics of thermal batteries", Applied Chemistry for Engineering, Vol. 25, No. 2, 2014, pp. 161-166, doi: https://doi.org/10.14478/ace.2013.1123.   DOI
4 Y. Shao-Horn, S. Osmialowski, and Q. C. Horn, "Nano-$FeS_2$ for commercial Li / $FeS_2$ primary batteries", J. Electrochem. Soc., Vol. 149, No. 11, 2002, pp. A1499-A1502, doi: https://doi.org/10.1149/1.1513558.   DOI
5 J. W. Choi, G. Cheruvally, H. J. Ahn, K. W. Kim, and J. H. Ahn, "Electrochemical characteristics of room temperature Li/$FeS_2$ batteries with natural pyrite cathode", J. Power Sources, Vol. 163, No. 1, 2006, pp.158-165, doi: https://doi.org/10.1016/j.jpowsour.2006.04.075.   DOI
6 L. Li, M. Caban-Acevedo, S. N. Girarda, and S. Jin, "High-purity iron pyrite ($FeS_2$) nanowires as high-capacity nanostructured cathodes for lithium-ion batteries", Nanoscale, Vol. 6, No. 4, 2014, pp. 2112-2118, doi: https://doi.org/10.1039/C3NR05851D.   DOI
7 J. Zheng, Y. Cao, C. Cheng, C. Chen, R. W. Yan, H. X. Huai, Q. F. Dong, M. S. Zheng, and C. C. Wang, "Facile synthesis of $Fe_3S_4$ hollow spheres with high-performance for lithium-ion batteries and water treatment", J. Mater. Chem. A, Vol. 2, No. 46, 2014, pp. 19882-19888, doi: https://doi.org/10.1039/C4TA05148C.   DOI
8 S. S. Zhang and D. T. Tran, "Mechanism and solution for the capacity fading of Li/$FeS_2$ battery", J. Electrochem. Soc., Vol. 163, No. 5, 2016, pp. A792-A797, doi: https://doi.org/10.1149/2.0041606jes.   DOI
9 X. Wen, X. Wei, L. Yang, and P. K. Shen, "Self-assembled $FeS_2$ cubes anchored on reduced graphene oxide as an anode material for lithium ion batteries", J. Mater. Chem. A, Vol. 3, No. 5, 2015, pp. 2090-2096, doi: https://doi.org/10.1039/C4TA05575F.   DOI
10 J. Xia, J. Jiao, B. Dai, W. Qiu, S. He, W. Qiu, P. Shen, and L. Chen, "Facile synthesis of $FeS_2$ nanocrystals and their magnetic and electrochemical properties", RSC Adv., Vol. 3, No. 17, 2013, pp. 6132-6140, doi: https://doi.org/10.1039/C3RA22405H.   DOI
11 J. Z. Wang, S. L. Chou, S. Y. Chew, J. Z. Sun, M. Forsyth, D. R. MacFarlane, and H. K. Liu, "Nickel sulfide cathode in combination with an ionic liquid-based electrolyte for rechargeable lithium batteries", Solid State Ionics, Vol. 179, No. 40, 2008, pp. 2379-2382, doi: https://doi.org/10.1016/j.ssi.2008.09.007.   DOI
12 J. Wang, S. Y. Chew, D. Wexler, G. X. Wang, S. H. Ng, S. Zhong, and H. K. Liu, "Nanostructured nickel sulfide synthesized via a polyol route as a cathode material for the rechargeable lithium battery", Electrochem. Commun., Vol. 9, No. 8, 2007, pp. 1877-1880, doi: https://doi.org/10.1016/j.elecom.2007.04.020.   DOI
13 C. H. Lai, K. W. Huang, J. H. Cheng, C. Y. Lee, W. F. Lee, C. T. Huang, B. J. Hwang, and L. J. Chen, "Oriented growth of large-scale nickel sulfidenanowire arrays via a general solution route for lithium-ion battery cathode applications", J. Mater. Chem., Vol. 19, No. 39, 2009, pp. 7277-7283, doi: https://doi.org/10.1039/B909261G.   DOI
14 J. J. Cheng, Y. Ou, J. T. Zhu, H. J. Song, and Y. Pan, "Nickel sulfide cathode for stable charge-discharge rates in lithium rechargeable battery", Mater. Chem. Phys., Vol. 231, 2019, pp. 131-137, doi: https://doi.org/10.1016/j.matchemphys.2019.04.024.   DOI
15 S. C. Han, K. W. Kim, H. J. Ahn, J. H. Ahn, and J. Y. Lee, "Charge-discharge mechanism of mechanically alloyed NiS used as a cathode in rechargeable lithium batteries", J. Alloys. Compd., Vol. 361, No. 1-2, 2003, pp. 247-251, doi: https://doi.org/10.1016/S0925-8388(03)00380-3.   DOI
16 N. H. Idris, M. M. Rahman, S. L. Chou, J. Z. Wang, D. Wexler, and H. K. Liu, "Rapid synthesis of binary ${\alpha}-NiS-{\beta}-NiS$ by microwave autoclave for rechargeable lithium batteries", Electrochim. Acta, Vol. 58, 2011, pp. 456-462, doi: https://doi.org/10.1016/j.electacta.2011.09.066.   DOI
17 T. Takeuchi, H. Sakaebe, H. Kageyam, K. Handa, T. Sakai, and K. Tatsumi, "Modification of nickel sulfide by surface coating with $TiO_2\;and\;ZrO_2$ for improvement of cycle capability", J. Electrochem. Soc., Vol. 156, No. 11, 2009, pp. A958-A966, doi: https://doi.org/10.1149/1.3225908.   DOI
18 N. Mahmood, C. Zhang, J. Jiang, F. Liu, and Y. Hou, "Multifunctional $Co_3S_4$/graphene composites for lithium ion batteries and oxygen reduction reaction", Chemistry, Vol. 19, No.16, 2013, pp. 5183-5190, doi: https://doi.org/10.1002/chem.201204549.   DOI
19 Y. Wang, Q. Zhu, L. Tao, and X. Su, "Controlled-synthesis of NiS hierarchical hollow microspheres with different building blocks and their application in lithium batteries" J. Mater. Chem.. Vol. 21, No. 25, 2011, pp. 9248-9254, doi: https://doi.org/10.1039/C1JM10271K.   DOI
20 J. He, Y. Chen, P. Li, F. Fu, Z. Wang, and W. Zhang, "Selfassembled $CoS_2$ nanoparticles wrapped by $CoS_2$-quantumdots-anchored graphene nanosheets as superior-capability anode for lithium-ion batteries", Electrochim. Acta, Vol. 182, 2015, pp. 424-429, doi: https://doi.org/10.1016/j.electacta.2015.09.131.   DOI
21 C. Dong, X. Zheng, B. Huang, and M. Lu, "Enhanced electrochemical performance of FeS coated by Ag as anode for lithium-ion batteries", Appl. Surf. Sci., Vol. 265, 2013, pp. 114-119, doi: https://doi.org/10.1016/j.apsusc.2012.10.145.   DOI
22 W. Qiu, J. Xia, H. Zhong, S. He, S. Lai, and L. Chen, "L-Cysteine-assisted synthesis of cubic pyrite/nitrogendoped graphene composite as anode material for lithiumion batteries", Electrochim. Acta, Vol. 137, 2014, pp. 197-205, doi: https://doi.org/10.1016/j.electacta.2014.05.156.   DOI
23 N. Lingappan, N. H. Van, S. Lee, and D. J. Kang, "Growth of three dimensional flower-like molybdenum disulfide hierarchical structures on graphene/carbon nanotube network: an advanced heterostructure for energy storage devices", J. Power Sources, Vol. 280, 2015, pp. 39-46, doi: https://doi.org/10.1016/j.jpowsour.2015.01.064.   DOI
24 K. Zhang, T. Zhang, J. Liang, Y. Zhu, N. Lin, and Y. Qian, "A potential pyrrhotite ($Fe_7S_8$) anode material for lithium storage", RSC Advances, Vol. 5, No. 19, 2015, pp. 14828-14831, doi: https://doi.org/10.1039/C4RA14819C.   DOI
25 X. Meng, K. He, D. Su, X. Zhang, C. Sun, Y. Ren, H. H. Wang, W. Weng, L. Trahey, C. P. Canlas, and J. W. Elam, "Gallium sulfide-single‐walled carbon nanotube composites: high‐performance anodes for lithium‐ion batteries", Adv. Funct. Mater., Vol. 24, No. 34, 2014, pp.5435-5442, doi: https://doi.org/10.1002/adfm.201401002.   DOI
26 Y. Liu, Y. Qiao, W. X. Zhang, Z. Li, X. L. Hu, L. X. Yuana, and Y. H. Huang, "Coral-like ${\alpha}$-MnS composites with N-doped carbon as anode materials for high-performance lithiumion batteries", J. Material Chemistry, Vol. 22, No. 45, 2012, pp. 24026-24033, doi: https://doi.org/10.1039/C2JM35227C.   DOI
27 J. Cai, Z. Li, and P. K. Shen, "Porous SnS nanorods/carbon hybrid materials as highly stable and high capacity anode for Li-ion batteries", ACS Appl. Mater. Interfaces, Vol. 4, No. 8, 2012, pp. 4093-4098, doi: https://doi.org/10.1021/am300873n.   DOI
28 N. Mahmood, C. Zhang, and Y. Hou, "Nickel Sulfide/nitrogen-doped graphene composites: phase‐controlled synthesis and high performance anode materials for lithium ion batteries", Small, Vol. 9, No. 8, 2013, pp. 1321-1328, doi: https://doi.org/10.1002/smll.201203032.   DOI
29 Q. Chen, W. Chen, J. Ye, Z. Wang, and J. Y. Lee, "L-Cysteine -assisted hydrothermal synthesis of nickel disulfide/ graphene composite with enhanced electrochemical performance for reversible lithium storage", J. Power Sources, Vol. 294, 2015, pp. 51-58, doi: https://doi.org/10.1016/j.jpowsour.2015.06.071.   DOI
30 M. Walter, T. Zündab, and M. V. Kovalenko, "Pyrite ($FeS_2$) nanocrystals as inexpensive high-performance lithium-ion cathode and sodium-ion anode materials", Nanoscale, Vol. 7, No. 20, 2015, pp. 9158-9163, doi: https://doi.org/10.1039/C5NR00398A.   DOI
31 Q. Zhang, R. Li, M. Zhang, B. Zhang, and X. Gou, "$SnS_2$/reduced graphene oxide nanocomposites with superior lithium storage performance". Electrochim. Acta, Vol. 115, 2014, pp. 425-433, doi: https://doi.org/10.1016/j.electacta.2013.10.193.   DOI
32 X. Xu, S. Jeong, C. S. Rout, P. Oh, M. Ko, H. Kim, M. G. Kim, R. Cao, H. S. Shin, and J. Cho, "Lithium reaction mechanism and high rate capability of $VS_4$-graphene nanocomposite as an anode material for lithium batteries", J. Mater. Chem. A, Vol. 2, No. 28, 2014, pp. 10847-10853, doi: https://doi.org/10.1039/C4TA00371C.   DOI
33 Y. Fu, Z. Zhang, X. Yang, Y. Gan, and W. Chen, "ZnS nanoparticles embedded in porous carbon matrices as anode materials for lithium ion batteries", RSC Adv., Vol. 5, No. 106, 2015, pp. 6941-86944, doi: https://doi.org/10.1039/C5RA15108B.