• Title/Summary/Keyword: Metal core

Search Result 623, Processing Time 0.024 seconds

Effects of Curing Temperature on the Optical and Charge Trap Properties of InP Quantum Dot Thin Films

  • Mohapatra, Priyaranjan;Dung, Mai Xuan;Choi, Jin-Kyu;Jeong, So-Hee;Jeong, Hyun-Dam
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.1
    • /
    • pp.263-272
    • /
    • 2011
  • Highly luminescent and monodisperse InP quantum dots (QDs) were prepared by a non-organometallic approach in a non-coordinating solvent. Fatty acids with well-defined chain lengths as the ligand, a non coordinating solvent, and a thorough degassing process are all important factors for the formation of high quality InP QDs. By varying the molar concentration of indium to ligand, QDs of different size were prepared and their absorption and emission behaviors studied. By spin-coating a colloidal solution of InP QD onto a silicon wafer, InP QD thin films were obtained. The thickness of the thin films cured at 60 and $200^{\circ}C$ were nearly identical (approximately 860 nm), whereas at $300^{\circ}C$, the thickness of the thin film was found to be 760 nm. Different contrast regions (A, B, C) were observed in the TEM images, which were found to be unreacted precursors, InP QDs, and indium-rich phases, respectively, through EDX analysis. The optical properties of the thin films were measured at three different curing temperatures (60, 200, $300^{\circ}C$), which showed a blue shift with an increase in temperature. It was proposed that this blue shift may be due to a decrease in the core diameter of the InP QD by oxidation, as confirmed by the XPS studies. Oxidation also passivates the QD surface by reducing the amount of P dangling bonds, thereby increasing luminescence intensity. The dielectric properties of the thin films were also investigated by capacitance-voltage (C-V) measurements in a metal-insulator-semiconductor (MIS) device. At 60 and $300^{\circ}C$, negative flat band shifts (${\Delta}V_{fb}$) were observed, which were explained by the presence of P dangling bonds on the InP QD surface. At $300^{\circ}C$, clockwise hysteresis was observed due to trapping and detrapping of positive charges on the thin film, which was explained by proposing the existence of deep energy levels due to the indium-rich phases.

Accuracy comparison of buccal bite scans by five intra-oral scanners (구강스캐너 5종의 협측 악간관계 스캔 정확성 비교 연구)

  • Park, Ji-Man;Jeon, Jin;Heo, Seong-Joo
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.34 no.1
    • /
    • pp.17-31
    • /
    • 2018
  • Purpose: The purpose of this study was to investigate the accuracy of the interocclusal relationship between upper and lower teeth according to the buccal interocclusal record scan using various intraoral scanner systems. Materials and Methods: The upper and lower full arch Models with normal occlusion were scanned with 5 intraoral scanners (Cerec Omnicam, CS3500, iTero, Trios, True Definition). Buccal interocclusal record scan was taken only at the left side while occlusion was intentionally raised by 1 mm, 2 mm, 3 mm, and 4 mm with metal cylinder core embedded within polyvinylsiloxane bite registration material at the right molar region. The superimposition analysis was done to evaluate overall three-dimensional deviation and cross-section analysis was done to evaluate the degree and the direction of deviation of interocclusal relationship. Results: From the superimposition study, Cerec Omnicam showed the least deviation ($165.5{\mu}m$) and CS3500 ($369.0{\mu}m$) showed the largest (P < 0.01). And the deviation was greater in 3, 4, 2 mm group than 1 mm (P < 0.01). From the cross-section study, Cerec Omnicam showed the farthest deviation ($-242.8{\mu}m$) and CS3500 showed the closest deviation ($312.5{\mu}m$) and a significantly high value was shown in 3 mm group. Conclusion: Every intraoral scanner has different accuracy in reproducing interocclusal relationship.

Magnetic Properties and Application of Caltalysts in Biginelli Reaction for the Ni and Ni@C Synthesized by Levitational Gas Condensation (LGC) (부양증발응축법으로 제조된 Ni과 Ni@C의 자성특성 및 Biginelli 합성 촉매 적용연구)

  • Uhm, Young Rang
    • Journal of the Korean Magnetics Society
    • /
    • v.27 no.3
    • /
    • pp.87-91
    • /
    • 2017
  • Carbon-encapsulated Ni and metal Ni nanoparticles were synthesized by levitational gas condensation (LGC). Methane ($CH_4$) gas was used to coat the surface of the Ni nanoparticles. The Ni particles had a core diameter of 10 nm, and were covered by 2~3 nm thin carbon layers with multi-shells structure.The low magnetization comparing with the Ni nanoparticles without carbon-shell results in the coexistence of nonmagnetic carbon and a large surface spin percentage with disordered magnetization orientation for the nanoparticles. Biginelli reactions in the presence of L-proline and Ni and carbon encapsulated Ni nanoparticles were carried out to change the ratio between stereoisomers. The obtained S-enantiomers for 3,4-dihydropyrimidine (DHPM) using catalysts of Ni, and Ni@C was an excess of about ${\Delta}{\sim}7.4%$ and ${\Delta}{\sim}19.6%$, respectively. The nanopowders were fully recovered using magnet to reuse as a catalyst. The Ni@C was shown at same yield to formation of 3,4-DHPM, though it was recycled for catalyst in the reaction.

INNOVATIVE CONCEPT FOR AN ULTRA-SMALL NUCLEAR THERMAL ROCKET UTILIZING A NEW MODERATED REACTOR

  • NAM, SEUNG HYUN;VENNERI, PAOLO;KIM, YONGHEE;LEE, JEONG IK;CHANG, SOON HEUNG;JEONG, YONG HOON
    • Nuclear Engineering and Technology
    • /
    • v.47 no.6
    • /
    • pp.678-699
    • /
    • 2015
  • Although the harsh space environment imposes many severe challenges to space pioneers, space exploration is a realistic and profitable goal for long-term humanity survival. One of the viable and promising options to overcome the harsh environment of space is nuclear propulsion. Particularly, the Nuclear Thermal Rocket (NTR) is a leading candidate for nearterm human missions to Mars and beyond due to its relatively high thrust and efficiency. Traditional NTR designs use typically high power reactors with fast or epithermal neutron spectrums to simplify core design and to maximize thrust. In parallel there are a series of new NTR designs with lower thrust and higher efficiency, designed to enhance mission versatility and safety through the use of redundant engines (when used in a clustered engine arrangement) for future commercialization. This paper proposes a new NTR design of the second design philosophy, Korea Advanced NUclear Thermal Engine Rocket (KANUTER), for future space applications. The KANUTER consists of an Extremely High Temperature Gas cooled Reactor (EHTGR) utilizing hydrogen propellant, a propulsion system, and an optional electricity generation system to provide propulsion as well as electricity generation. The innovatively small engine has the characteristics of high efficiency, being compact and lightweight, and bimodal capability. The notable characteristics result from the moderated EHTGR design, uniquely utilizing the integrated fuel element with an ultra heat-resistant carbide fuel, an efficient metal hydride moderator, protectively cooling channels and an individual pressure tube in an all-in-one package. The EHTGR can be bimodally operated in a propulsion mode of $100MW_{th}$ and an electricity generation mode of $100MW_{th}$, equipped with a dynamic energy conversion system. To investigate the design features of the new reactor and to estimate referential engine performance, a preliminary design study in terms of neutronics and thermohydraulics was carried out. The result indicates that the innovative design has great potential for high propellant efficiency and thrust-to-weight of engine ratio, compared with the existing NTR designs. However, the build-up of fission products in fuel has a significant impact on the bimodal operation of the moderated reactor such as xenon-induced dead time. This issue can be overcome by building in excess reactivity and control margin for the reactor design.

Estimate of Manganese and Iron Oxide Reduction Rates in Slope and Basin Sediments of Ulleung Basin, East Sea (동해 울릉분지 퇴적물에서 망간산화물과 철산화물 환원율 추정)

  • Choi, Yu-Jeong;Kim, Dong-Seon;Lee, Tae-Hee;Lee, Chang-Bok
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.14 no.3
    • /
    • pp.127-133
    • /
    • 2009
  • In order to determine organic carbon oxidation by manganese and iron oxides, six core sediments were obtained in slope and basin sediments of Ulleung Basin in East Sea. The basin sediments show high organic carbon contents (>2%) at the water depths deeper than 2,000 m; this is rare for deep-sea sediments, except for those of the Black Sea and Chilean upwelling regions. In the Ullleung Basin, the surface sediments were extremely enriched by Manganese oxides with more than 2%. Maximum contents of Fe oxides were found at the depth of $1{\sim}4cm$ in basin sediments. However, the high level of Mn and Fe oxides was not observed in slope sediment. Surface manganese enrichments (>2%) in Ulleung Basin may be explained by two possible mechanisms: high organic carbon contents and optimum sedimentation rates and sufficient supply of dissolved Manganese from slope to the deep basin. Reduction rates of iron and manganese oxides ranged from 0.10 to $0.24\;mmol\;m^{-2}day^{-1}$ and from 0.30 to $0.57\;mmol\;m^{-2}day^{-1}$, respectively. In Ulleung Basin sediments, $13{\sim}26%$ of organic carbon oxidation may be linked to the reduction of iron and manganese oxides. Reduction rates of metal oxides were comparable to those of Chilean upwelling regions, and lower than those of Danish coastal sediments.

Fabrication of Label-Free Biochips Based on Localized Surface Plasmon Resonance (LSPR) and Its Application to Biosensors (국소 표면 플라즈몬 공명 (LSPR) 기반 비표지 바이오칩 제작 및 바이오센서로의 응용)

  • Kim, Do-Kyun;Park, Tae-Jung;Lee, Sang-Yup
    • KSBB Journal
    • /
    • v.24 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • In the past decade, we have observed rapid advances in the development of biochips in many fields including medical and environmental monitoring. Biochip experiments involve immobilizing a ligand on a solid substrate surface, and monitoring its interaction with an analyte in a sample solution. Metal nanoparticles can display extinction bands on their surfaces. These charge density oscillations are simply known as the localized surface plasmon resonance (LSPR). The high sensitivity of LSPR has been utilized to design biochips for the label-free detection of biomolecular interactions with various ligands. LSPR-based optical biochips and biosensors are easy to fabricate, and the apparatus cost for the evaluation of optical characteristics is lower than that for the conventional surface plasmon resonance apparatus. Furthermore, the operation procedure has become more convenient as it does not require labeling procedure. In this paper, we review the recent advances in LSPR research and also describe the LSPR-based optical biosensor constructed with a core-shell dielectric nanoparticle biochip for its application to label-free biomolecular detections such as antigen-antibody interaction.

A study on the production techniques and prototype of the mother-of-pearl chrysanthemum pattern box from the Goryeo Dynasty (고려 나전국화넝쿨무늬상자의 제작기법 고찰 및 원형 연구)

  • LEE Heeseung;LEE Minhye;KIM Sunghun;LEE Hyeonju
    • Korean Journal of Heritage: History & Science
    • /
    • v.57 no.1
    • /
    • pp.126-144
    • /
    • 2024
  • The chrysanthemum vine pattern box from the Goryeo Dynasty expresses in great detail the representative features of Goryeo Dynasty lacquerware with mother-of-pearl, such as engraving patterns on the surface of fine mother-of-pearl, expressing vine stems using metal wires, and twisting metal wires to form the boundaries of each patterns. While the lacquerware with mother-of-pearl that remains today from the Goryeo Dynasty has the form of a sutra box and a box with lid, the chrysanthemum vine pattern box that is the subject of this study is in the shape of a box with a separate lid and body, making it difficult to estimate the purpose of production or the stored contents. In this study, we attempted to confirm the formative characteristics of the chrysanthemum vine pattern box in order to confirm its original form, and to investigate its structure and production technique through X-ray transmission. In addition, we attempted to identify the use and production purpose of the box by classifying and comparing the previously known lacquerware with mother-ofpearl from the Goryeo Dynasty by type. As a result of the investigation, fabric was confirmed the bottom of body and inner box through X-ray images. Through this, it was confirmed that the 'Mogsimjeopichilgi'(wooden core grabbing fabric technique) of wrapping the object with fabric was used. And through wood grain, it was possible to confirm the wooden board composition of the part presumed to be the restored part and the part presumed to have had existing Jangseog. In addition, it was confirmed that the joints were connected in a Majdaeim(part to part). Based on the survey results, a total of 14 pieces, including 9 Sutra boxes, 3 boxes, and 2 small boxes, that remain from the Goryeo Dynasty were classified by type and examined for similarity. Among them, there is a "Chrysanthemum Vine Pattern Sutra Box" from a private collection in Japan, a "Black Lacquered Chrysanthemum Arabesque Bun Sutra Box" from the Tokugawa Art Museum, a "Sutra Holder" from the British Museum, and a "Small Box with a Mother-of-Pearl Chrysanthemum Vine Pattern" from a private collection in Korea. The pattern composition of five points was most similar to the subject of this study. As a result of comparing the damage pattern, formative characteristics, and structural features of each part, it is presumed that the sutra holder in the British Museum was transformed into its current form from the original the chrysanthemum vine patterned box. Lastly, in order to confirm the purpose of production, that is, the use of this box, we investigated examples of Tripitaka Koreana printed version produced at a time similar to the social atmosphere of Goryeo at the time. Following the Mongol(元) invasion after the Goryeo military regime at the time, sutras appeared to pray for the stability of the nation and the soul of an individual, and with the development of domestic printing and paper in the 13th century, it gradually coincided with the transition from a scroll to a folded form, and the form of a box changed from a box. It is believed that the storage method also changed.

Geochemistry of Heavy Metals and Rare Earth Elements in Core Sediments from the Korea Deep-Sea Environmental Study (KODES)-96 Area, Northeast Equatorial Pacific (한국심해환경연구(KODES) 지역 주상 퇴적물중 금속 및 희토류원소의 지구화학적 특성)

  • Jung, Hoi-Soo;Park, Sung-Hyun;Kim, Dong-Seon;Choi, Man-Sik;Lee, Kyeong-Young
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.2 no.2
    • /
    • pp.125-137
    • /
    • 1997
  • To study the vertical variation of heavy metal and Rare Earth Element (REE) contents in deep-sea sediments, eighteen cores were sampled from the Korea Deep-sea Environmental Study (KODES)-96 area in the C-C zone (Clarion-Clipperton fracture zone), northeast equatorial Pacific. Sediment columns can be divided into three units based on sediment colors and geochemical characters; uppermost Unit I with brown color, middle Unit II with pale brown color and smaller Ni/Cu ratio than the ratio in Unit I, and lowermost Unit III with dark (brown) colors and higher contents of Mn, Ni, Cu, and REEs than those in Unit I and II. Unit II can be divided more into two layers of upper Unit IIa and lower Unit IIb. Unit IIb is characterized by high contents of Cu, 3+REEs (REEs except Ce), smectite, and severely deteriorated fossil tests. Unit III can also be divided into two units; upper Unit IIIa with dark brown color, and lower Unit IIIb with black color and enriched Mn and Fe. The KODES area was located near from the East Pacific Rise (EPR) When Unit III Sediments were deposited, considering the hiatus between Unit II and III (Quaternary-Tertiary boundary) and the spreading rate (10 cm/yr) and direction (north southern west) of the Pacific plate from the EPR. High contents of Mn and Fe in Unit IIIb may be related with hydrothermal influence from the EPR. Meanwhile, Unit IIb (about 2~3 Ma) and Unit III (11~30 Ma) layers were probably formed near (or under) the equatorial high productivity zone, and accordingly received a lot of organic materials. As a result, Cu and 3+REEs, closely associated with organic materials, are enriched in smectite and/or Ca-P composites (fish bone debrise, biogenic apatite) after decomposition and reprecipitation on the sea floor. Higher contents of Cu and 3+REEs in Unit IIb and III are suggested to be the result of abundant supply of organic substances in the equatorial high productivity zone.

  • PDF

CNT-Ni-Fabric Flexible Substrate with High Mechanical and Electrical Properties for Next-generation Wearable Devices (차세대 웨어러블 디바이스를 위한 높은 기계적/전기적 특성을 갖는 CNT-Ni-Fabric 유연기판)

  • Kim, Hyung Gu;Rho, Ho Kyun;Cha, Anna;Lee, Min Jung;Ha, Jun-Seok
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.2
    • /
    • pp.39-44
    • /
    • 2020
  • Recently, numerous researches are being conducted in flexible substrate to apply to wearable devices. Particularly, Conductive substrate researches that can implement the wearable devices on clothing are massive. In this study, we formed fiber substrate spraying CNT and Pd mixed solution on it and plated metal layer with electroless plating. Used SEM equipment and EDS analysis to analysis structure of the plated fiber substrate and discovered Ni layer was created. For check electrical properties, mapping was performed to check surface resistance and distribution of resistance of electroless plated fiber substrate with 4-point probe. It was confirmed that conductivity was improved as the duration of electroless plating was increased, and it was found that distribution of resistance by surface location was uniform. Changes in resistance due to mechanical stress were measured through tensile, bending, and twisting tests. As a result, it was confirmed that resistance change of flexible substrate gradually disappeared as plating time increased. Using UTM (Universal testing machine), it was analyzed mechanical properties of the electroless plated substrate with respect to changes in plating time were improved. In the case of conductive fiber substrate in which electroless plating was performed for 2 hours, tensile strength was increased by 16 MPa than fiber substrate. Based on these results, we found that Ni-CNT-Fabric flexible substrate is adequate for clothing-intergrated conductive substrate and we positively expect that this experiment shows flexible substrate can adapt to and develop not only a wearable device technology but also other fields needing flexibility such as battery, catalyst and solar cell.

Ground Security Activities for Prevention of Aviation Terrorism -Centered on San Francisco International Airport of the U.S.A.- (항공테러방지를 위한 지상 보안활동 -미국 샌프란시스코국제공항을 중심으로-)

  • Kang, Maeng-Jin;Kang, Jae-Won
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.2
    • /
    • pp.195-204
    • /
    • 2008
  • With the growth of airline management, as well as computer and IT security, the international trade in this modern society has been rapidly increasing, Along with the advancing, airplanes have become a universal means of communication. However, the complications associated with airplane safety have also been brought up as a result, the most concerning of which is terrorism. One of the main counterplans for preventing terrorism is Ground security activities the core of Ground security activities is absolute safety for passengers in both passenger terminal and freight terminal. Subastral security refers to physical protection, proximity control and 100% security search and freight guarding of the passengers' possessions, and the personnel's duties to perform such jobs are be! coming more crucial. On the other hand, Airport security check has bee n gradually developing since the 1960's, when hijacking began to take place. Although the airports have been providing more safe and comfortable services to their customers, terrorism is still happening today. When Ground security activities is minute, the users feel displeasure and discomfort, yet considering solely their convenience can brings problems in achieving safety. Since the 9.11 terror in 2001, the idea of improving and strengthening airport security was reinforced and a considerable amount of estate is being spent today for invention and application of new technology. Various nations, including the United States, have been improving their systems of security through public services; public police department is actively carrying out their duties in airports as well. In San Francisco International Airport, private police department is in charge of collection of data, national events, VIP protection, law enforcement, cooperation within facilities, daily-based patrol and traffic control. Under guidance and supervision of national organizations, such as TSA, general police department interprets X-Rays, operates metal detectors, checks passports or IDs and observes reactions to explosives. Under these circumstances, studies about advancement of cooperation and duties of general police department and private police department necessitated: especially about private police department and their training for searching equipments, decrease in number of turn over rate, invention of technology and prior settlement in estate for security. The privacy of the public, who make up the major population of airport passengers, must also be minimized. In the following research, the activities of police departments in San Francisco International Airport will be analyzed in order to understand recent actions of the United States on airport security.