Browse > Article

Fabrication of Label-Free Biochips Based on Localized Surface Plasmon Resonance (LSPR) and Its Application to Biosensors  

Kim, Do-Kyun (BioProcess Engineering Research Center, Center for Systems & Synthetic Biotechnology, Institute for the BioCentury, and Center for Ultramicrochemical Process Systems)
Park, Tae-Jung (BioProcess Engineering Research Center, Center for Systems & Synthetic Biotechnology, Institute for the BioCentury, and Center for Ultramicrochemical Process Systems)
Lee, Sang-Yup (Department of Chemical & Biomolecular Engineering, Department of Bio & Brain Engineering, Department of Biological Sciences, Bioinformatics Research Center, KAIST)
Publication Information
KSBB Journal / v.24, no.1, 2009 , pp. 1-8 More about this Journal
Abstract
In the past decade, we have observed rapid advances in the development of biochips in many fields including medical and environmental monitoring. Biochip experiments involve immobilizing a ligand on a solid substrate surface, and monitoring its interaction with an analyte in a sample solution. Metal nanoparticles can display extinction bands on their surfaces. These charge density oscillations are simply known as the localized surface plasmon resonance (LSPR). The high sensitivity of LSPR has been utilized to design biochips for the label-free detection of biomolecular interactions with various ligands. LSPR-based optical biochips and biosensors are easy to fabricate, and the apparatus cost for the evaluation of optical characteristics is lower than that for the conventional surface plasmon resonance apparatus. Furthermore, the operation procedure has become more convenient as it does not require labeling procedure. In this paper, we review the recent advances in LSPR research and also describe the LSPR-based optical biosensor constructed with a core-shell dielectric nanoparticle biochip for its application to label-free biomolecular detections such as antigen-antibody interaction.
Keywords
localized surface plasmon resonance; nanoparticle; core-shell dielectric nanoparticle biochip; label-free optical biosensor; biomolecular interaction;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Niemeyer, C. M. and U. Simon (2005), DNA-based assembly of metal nanoparticles, Eur. J. Inorg. Chem. 18, 3641-3655   DOI   ScienceOn
2 Liz-Marzan, L. M. (2006), Tailoring surface plasmon through the morpho1ogy and assembly of metal nanoparticles, Langmuir 22, 32-41   DOI   PUBMED   ScienceOn
3 Hutter, E. and J. H. Fendler (2004), Exploitation of localized surface plasmon resonance, Adv. Mater. 16, 1685-1706   DOI   ScienceOn
4 Ebbesen, T. W., H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff (1998), Extraordinary optical transmission through sub-wavelength hole arrays, Nature 391, 667-669   DOI   ScienceOn
5 Ishida, A and A. Fujii (2005), Effective photoexcitation in gold nanowells based on localized surface plasmon, Chem. Commun. 5, 608-610
6 Marx, K. A., T. Zhou, A. Montrone, D. McIntosh, and S. J. Braunhut (2005), Quartz crystal microbalance biosensor study of endothelial cells and their extracellular matrix following cell removal: Evidence for transient cellular stress and viscoelastic changes during detaclnnent and the elastic behavior of the pure matrix, Anal. Biochem. 343, 23-34   DOI   ScienceOn
7 Scaffiardi, L. B., N. Pellegri, O. de Sanctis, and J. O. Tocho (2005), Sizing gold nanoparticles by optical extinction spectroscopy, Nanotechnology, 16, 158-163   DOI   ScienceOn
8 Kumbhar, A. S., M. K. Kinnan, and G. Chumanov (2005), Multipole plasmon resonances of submicron silver particles, J. Am. Chem. Soc. 127, 12444-12445   DOI   ScienceOn
9 Okamoto, T. and 1. Yamaguchi (2000), Local plasmon sensor with gold colloid monolayers depositεd upon glass substrates, Opt. Lett. 25, 372-374   DOI   ScienceOn
10 Frederix, F., J.-M. Friedt, K.-H. Choi, W. Laureyn, A Campitelli, D. MondeIaers, G. Maes, and G. Borghs (2003), Biosensing based on light absorption of nanoscaled gold and silver particles, Anal. Chem. 75, 6894-6900   DOI   ScienceOn
11 Jain, P. K., W. Qian, and M. A. El-Sayed (2006), Ultrafast cooling of photoexcited in gold nanopaπiclethiolated DNA conjugates involves the dissociation of the gold-thiol bond, J. Am. Chem. Soc. 128, 2426-2433   DOI   ScienceOn
12 Haes, A J. and R. P. Van Duyne (2004), A unified view of propagating and localized surface plasmon resonance biosensors, Anal. Bioanal. Chem. 379, 920-930   DOI   PUBMED   ScienceOn
13 Haes, A J., S. Zou, G. C. Schatz, and R. P. Van Duyne (2004), Nanoscale optical biosensor : Short range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles, J. Phys. Chem. B. 108, 6961-6968   DOI   ScienceOn
14 Sonnichsen, C. and A. P. Alivisatos (2005), Gold nanorods as novel nonbleaching plasmon-based orientation sensors for polarized single-particle microscopy, Nano Lett. 5, 301-304   DOI   ScienceOn
15 Keating, C. D. (2005), Nanoscienlce enables ultrasensitive detection of Alzheimer's biomarker, P. Natl. Acad. Sci. USA. 102, 2263-2264   DOI   ScienceOn
16 Endo, T., K. Kerrnan, N. Nagatani, H. M. Hiepa, D.-K. Kim, Y. Yonezawa, K. Nakano, and E. Tamiya (2006), Multiple label-free detection of antigen-antibody reaction using localized surface plasmon resonancebased core-shell structured nanoparticle layer nanochip, Anal. Chem. 78, 6465-6475   DOI   ScienceOn
17 Malikova, N., I. Pastoriza-Santos, M. Schierhom, N. A. Kotov, and L. M. Liz-Marzan (2002), Layerby- layer assembled mixed spherical and planar gold nanoparticles : Control of interparticle interaction, Langmuir 18, 3694-3697   DOI   ScienceOn
18 Riboh, J. c., A J. Haes, A D. McFarland, C. R. Yonzon, and R. P. Van Duyne (2003), A nanoscale optical biosensor Real-time immunoassay in physiological buffer enabled by improved nanoparticle adhesion, J. Phys. Chem. B. 107, 1772-1780   DOI   ScienceOn
19 Mirkin, C. A., R. L. Letsinger, R. C. Mucic, and J. J. Storhoff (1996), A DNA-based method for rationally assembling nanoaprticles into macroscopic materials, Nature 382, 607-609   DOI   PUBMED   ScienceOn
20 Bailey, R. c., G. A. Kwong, C. G. Radu, O. N. Witte, and J. R. Heath (2007), DNA-encoded antibody libraries : A unified platforrn for multiplexed cell sorting and detection of genes and proteins, J. Am. Chem. Soc. 129, 1959-1967   DOI   ScienceOn
21 Maillard, M., M.-P. Pileni, S. Link, and M. A. El-Sayed (2004), Picosecond self-induced thermal lensing from colloidal silver nanodisks, J. Phys. Chem. B. 108, 5230-5234   DOI   ScienceOn
22 Skewis, L. R. and B. M Reinhard (2008), Spennidine modulated ribonuclease activity probed by RNA plasmon rulers, Nano Lett. 8, 214-220   DOI   ScienceOn
23 Evanoff, D. D., jr. and G. Chumanov (2004), Size-controlled synthesis of nanoparticles. 2. Measurement of extinction, scattering, and absorption cross sections, J. Phys. Chem. B. 108, 13957-13962   DOI   ScienceOn
24 Nikitin, P. I., A N. Grigorenko, A A beloglazov, M. V. Valeiko, A A. Savchuk, O. A Savchuk, G. Steiner, C. Kuhme, A Huebner, and R Salzer (2000), Surface plasmon resonance interferometry for micro-array biosensing, Sensor. Actuat. B-Chem. 85, 189-193   DOI   ScienceOn
25 Haes, A. J., S. Zou, G. C. Schatz, and R P. Van Duyne (2004), A nanoscale optical biosensor : The long range distance dependence of the localized surface plasmon resonance of noble metal nanoparicles, J. Phys. Chem. B. 108, 109-116   DOI   ScienceOn
26 Pierrat, S., I. Zins, A Breivogel, and C. Sonnichsen (2007), Self-assembly of small gold colloids with functionalized gold nanorods, Nano Lett. 7, 259-263   DOI   ScienceOn
27 Reinhard, B. M., M. Siu, H. Agarwal, A. P. Alivisatos, and J. Liphardt (2005), Calibration of dynamic molecular rulers based on plasmon coupling betweεn gold nanoparticles, Nano Lett. 5, 2246-2252   DOI   ScienceOn
28 Shen, Z., G. A. Stryker, R. A. Mernaugh, L. Yu, and X Zeng (2005), Single-chain fragment variable antibody piezoimmunosensors, Anal. Chem. 77, 797-805   DOI   ScienceOn
29 Vestergaard, M., K Kerman, M. Saito, N. Nagatani, Y. Takamura, and E. Tarniya (2005), A rapid label-free electrochemical detection and kinetic study of Alzheimer's amyloid beta aggregation, J. Am. Chem. Soc. 127, 11892-11893   DOI   ScienceOn
30 Karlsson, R. and R. Stahlberg (1995), Surface plasmon resonance detection multispot sensing for direct monitoring of interaction involving low-molecularweight analytes and for determination of low affinities, Anal. Biochem. 228, 274-280   DOI   ScienceOn
31 Nath, N. and A. Chilkoti (2002), A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface, Anal. Chem. 74, 504-509   DOI   ScienceOn
32 Haes, A J. and R P. Van Duyne (2002), A nanoscale optical biosensor: Sensitivity and selectivity of an approach based on localized surface plasmon resonance spectroscopy of triangular silver nanoparticles, J. Am. Chem. Soc. 124, 10596-10604   DOI   ScienceOn
33 Himmelhaus, M. and H. Takei (2000), Cap-shaped gold nanoparticles for an optical biosensor, Sensor. Actuat. B-Chem. 63, 24-30   DOI   ScienceOn
34 Nath, N. and A Chilkoti (2004), Label-free biosensing by surface plasmon resonance of nanoparticles on glass: Optimization of nanoparticle size, Anal. Chem. 76, 5370-5378   DOI   ScienceOn
35 Ueno, K (2005), Optical properties of nanoengineered gold blocks, Opt. Lett. 30, 2158-2160   DOI   ScienceOn
36 Wu, C.-M., Z.-C. jian, S.-F. Joe, and L.-B. Chang (2003), High-sensitivity sensor based on surface plasmon resonance and heterodyne interferometry, Sensor. Actuat. B-Chem. 92, 133-136   DOI   ScienceOn
37 Millstone J. E., S. Park, K. L. Shuford, L. Qin, G. C. Schatz, and C. A Mirkin (2005), Observation of a Quadrupole plasmon mode for a colloidal solution of gold nanoprisms, J. Am. Chem. Soc. 127, 5312-5313   DOI   ScienceOn
38 Nehl, C. L., H. Liao, and J. H. Hafner (2006), Optical properties of star-shaped gold nanoparticles, Nano Lett. 6, 683-688   DOI   ScienceOn
39 Schider, G., J. R Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A Leitner, and F. R Aussenegg (2001), Optical properties of Ag and Au nanowire gratings, J. Appl. Phys. 90, 3825-3830   DOI   ScienceOn
40 Vestergaard, M., K. Kerrnan, D.-K. Kim, H. M. Hiep, and E. Tamiya (2008), Detection of Alzheimer's tau protein using localized surface plasmon resonance-based immunochip, Talanta 74, 1038-1042   DOI   ScienceOn
41 Oldenburg, S. J., J. B. Jackson, S. L. Westcott, and N. J. Halas (1999), Infrared extinction properties of gold nanoshell, Appl. Phys. Lett. 75, 2897-28994   DOI
42 Link, S. and M A El-Sayed (1999), Spectral properties and reIaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods, J. Phys. Chem. B. 103, 8410-8426   DOI   ScienceOn
43 Kerman, K., M. Saito, Y. Morita, Y. Takamura, M. Ozsoz, and E. Tamiya (2004), Electrochemical coding of single-nucieotide polymorphisms by monobase-modified gold nanoparticles, Anal. Chem. 76, 1877-1884   DOI   ScienceOn
44 Hiep, H. M., T. Endo, K. Kerrnan, M. Chikae, D.-K, Kim, S. Yamamura, Y. Takamura, and E. Tamiya (2007), A localized surface plasmon resonance based immunosensor for the detection of casein in milk, Sci. Thechnol. Adv. Mat. 8, 331-338   DOI   ScienceOn
45 Bailey, R. C. and J. T. Hupp (2003), Micropatterned polymeric gratings as chemoresponsive volatile organic compound sensors : Imslications for analyte detection and identification via diffraction-based sensor arrays, Anal. Chem. 75, 2392-2398   DOI   ScienceOn
46 Kim, F., S. Connor, H. Song, T. Kuykendall, and P. Yang (2004), Platonic gold nanocrystals, Angew. Chem. Int. Edit. 116, 3759-3763   DOI   ScienceOn
47 Maier, S. A. and H. A. Atwater (2005), Plasmonics : Localization and guiding of electromagnetic energy in metal/dielectric structures, J. Appl. Phys. 98, 011101   DOI   ScienceOn
48 Patolsky, F., G. Zheng, and C. M. Lieber (2006), Nanowire-based biosnesors, Anal. Chem. 78, 4261-4269