Fabrication of Label-Free Biochips Based on Localized Surface Plasmon Resonance (LSPR) and Its Application to Biosensors

국소 표면 플라즈몬 공명 (LSPR) 기반 비표지 바이오칩 제작 및 바이오센서로의 응용

  • Kim, Do-Kyun (BioProcess Engineering Research Center, Center for Systems & Synthetic Biotechnology, Institute for the BioCentury, and Center for Ultramicrochemical Process Systems) ;
  • Park, Tae-Jung (BioProcess Engineering Research Center, Center for Systems & Synthetic Biotechnology, Institute for the BioCentury, and Center for Ultramicrochemical Process Systems) ;
  • Lee, Sang-Yup (Department of Chemical & Biomolecular Engineering, Department of Bio & Brain Engineering, Department of Biological Sciences, Bioinformatics Research Center, KAIST)
  • 김도균 (한국과학기술원 생물공정연구센터, 시스템 및 합성생명공학연구센터, 바이오융합연구소, 초미세화학공정연구센터) ;
  • 박태정 (한국과학기술원 생물공정연구센터, 시스템 및 합성생명공학연구센터, 바이오융합연구소, 초미세화학공정연구센터) ;
  • 이상엽 (생명화학공학과 (BK21 프로그램), 바이오 및 뇌공학과, 생명과학과, 생물정보연구센터)
  • Published : 2009.02.28

Abstract

In the past decade, we have observed rapid advances in the development of biochips in many fields including medical and environmental monitoring. Biochip experiments involve immobilizing a ligand on a solid substrate surface, and monitoring its interaction with an analyte in a sample solution. Metal nanoparticles can display extinction bands on their surfaces. These charge density oscillations are simply known as the localized surface plasmon resonance (LSPR). The high sensitivity of LSPR has been utilized to design biochips for the label-free detection of biomolecular interactions with various ligands. LSPR-based optical biochips and biosensors are easy to fabricate, and the apparatus cost for the evaluation of optical characteristics is lower than that for the conventional surface plasmon resonance apparatus. Furthermore, the operation procedure has become more convenient as it does not require labeling procedure. In this paper, we review the recent advances in LSPR research and also describe the LSPR-based optical biosensor constructed with a core-shell dielectric nanoparticle biochip for its application to label-free biomolecular detections such as antigen-antibody interaction.

현재까지 연구 개발된 바이오칩 및 센서의 경우에는 생체분자 상호작용의 분석을 수행하기 위해서 효소나 형광 물질 등과 같은 표지물질을 생체분자에 주입할 필요성이 있었다. 이러한 표지작업은 단백질 등과 같이 고차구조를 형성하는 생체분자에 있어서 그 분자인식능을 저하시키는 문제가 발생하게 된다. 그리고 표지작업은 일련의 조작이 필요하기 때문에 조작의 복잡성을 띄게 되고, 간편성을 저해하는 문제가 발생하게 되며, 분석 결과를 얻기 위해서는 장시간을 필요로 하게 된다. 또한, 생체분자 상호작용의 분석에 적용되는 측정장치도 대형화하게 되어 온사이트 모니터링에 이용하기 어렵다. 이러한 문제점들을 해결하기 위해서 비표지로 생체분자의 상호작용 분석이 가능한 SPR 광학특성, QCM 및 전기화학법 등을 이용한 비표지 바이오칩 및 센서가 개발되었다. 하지만 표지 바이오칩 및 센서와 마찬가지로 장치의 대형화 및 복잡화, 간편성 및 감도 등에 문제가 있었다. 따라서 지금까지 개발되어진 표지 및 비표지 바이오칩의 문제들을 해결하기 위해서 나노구조에서만 발현되는 새로운 광학특성인 LSPR을 기반으로 하는 새로운 형태의 코어-쉘 구조 나노입자 바이오칩이 제작되었다. 코어-쉘 나노입자 바이오칩의 표면에 수직방향으로부터 입사광을 조사하고 바이오칩 표면으로부터 반사된 반사광을 검출기로 검출하여 흡수 스펙트럼을 소형의 분광기로 해석함으로서 코어-쉘 나노입자 바이오칩 기반 비표지 광학 바이오센서를 완성하였다. 또한 단백질 항원-항체 반응에 대한 비표지 검출 및 정량특성을 평가한 결과, 감도, 간편성, 유연성, 폭넓은 응용성 등에 양호한 특성을 확인할 수 있었다. 이상에서 살펴본 바와 같이, 코어-쉘 나노입자 바이오칩 기반 비표지 광학 바이오센서는 생체분자 상호작용의 분석에 많이 이용되고 있는 단백질, DNA, 세포 등의 생체분자에 유연하게 대처할 수 있을 것으로 생각되어지며, 그 밖에 의료, 식품분석, 환경 및 공정 모니터링 등 분야에 폭넓게 이용될 것으로 기대되고 있다. 또한 본 코어-쉘 나노입자 바이오칩 기반 비표지 광학 바이오센서는 소형으로 저렴한 분광기를 이용하여 측정을 실시하고 있기 때문에 온사이트 모니터링에의 적용도 가능할 것으로 생각된다.

Keywords

References

  1. Liz-Marzan, L. M. (2006), Tailoring surface plasmon through the morpho1ogy and assembly of metal nanoparticles, Langmuir 22, 32-41 https://doi.org/10.1021/la0513353
  2. Maier, S. A. and H. A. Atwater (2005), Plasmonics : Localization and guiding of electromagnetic energy in metal/dielectric structures, J. Appl. Phys. 98, 011101 https://doi.org/10.1063/1.1951057
  3. Niemeyer, C. M. and U. Simon (2005), DNA-based assembly of metal nanoparticles, Eur. J. Inorg. Chem. 18, 3641-3655 https://doi.org/10.1002/ejic.200500425
  4. Hutter, E. and J. H. Fendler (2004), Exploitation of localized surface plasmon resonance, Adv. Mater. 16, 1685-1706 https://doi.org/10.1002/adma.200400271
  5. Ebbesen, T. W., H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff (1998), Extraordinary optical transmission through sub-wavelength hole arrays, Nature 391, 667-669 https://doi.org/10.1038/35570
  6. Karlsson, R. and R. Stahlberg (1995), Surface plasmon resonance detection multispot sensing for direct monitoring of interaction involving low-molecularweight analytes and for determination of low affinities, Anal. Biochem. 228, 274-280 https://doi.org/10.1006/abio.1995.1350
  7. Ueno, K (2005), Optical properties of nanoengineered gold blocks, Opt. Lett. 30, 2158-2160 https://doi.org/10.1364/OL.30.002158
  8. Ishida, A and A. Fujii (2005), Effective photoexcitation in gold nanowells based on localized surface plasmon, Chem. Commun. 5, 608-610
  9. Marx, K. A., T. Zhou, A. Montrone, D. McIntosh, and S. J. Braunhut (2005), Quartz crystal microbalance biosensor study of endothelial cells and their extracellular matrix following cell removal: Evidence for transient cellular stress and viscoelastic changes during detaclnnent and the elastic behavior of the pure matrix, Anal. Biochem. 343, 23-34 https://doi.org/10.1016/j.ab.2005.05.013
  10. Shen, Z., G. A. Stryker, R. A. Mernaugh, L. Yu, and X Zeng (2005), Single-chain fragment variable antibody piezoimmunosensors, Anal. Chem. 77, 797-805 https://doi.org/10.1021/ac048655w
  11. Kerman, K., M. Saito, Y. Morita, Y. Takamura, M. Ozsoz, and E. Tamiya (2004), Electrochemical coding of single-nucieotide polymorphisms by monobase-modified gold nanoparticles, Anal. Chem. 76, 1877-1884 https://doi.org/10.1021/ac0351872
  12. Vestergaard, M., K Kerman, M. Saito, N. Nagatani, Y. Takamura, and E. Tarniya (2005), A rapid label-free electrochemical detection and kinetic study of Alzheimer's amyloid beta aggregation, J. Am. Chem. Soc. 127, 11892-11893 https://doi.org/10.1021/ja052522q
  13. Oldenburg, S. J., J. B. Jackson, S. L. Westcott, and N. J. Halas (1999), Infrared extinction properties of gold nanoshell, Appl. Phys. Lett. 75, 2897-28994 https://doi.org/10.1063/1.125183
  14. Scaffiardi, L. B., N. Pellegri, O. de Sanctis, and J. O. Tocho (2005), Sizing gold nanoparticles by optical extinction spectroscopy, Nanotechnology, 16, 158-163 https://doi.org/10.1088/0957-4484/16/1/030
  15. Kumbhar, A. S., M. K. Kinnan, and G. Chumanov (2005), Multipole plasmon resonances of submicron silver particles, J. Am. Chem. Soc. 127, 12444-12445 https://doi.org/10.1021/ja053242d
  16. Evanoff, D. D., jr. and G. Chumanov (2004), Size-controlled synthesis of nanoparticles. 2. Measurement of extinction, scattering, and absorption cross sections, J. Phys. Chem. B. 108, 13957-13962 https://doi.org/10.1021/jp0475640
  17. Link, S. and M A El-Sayed (1999), Spectral properties and reIaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods, J. Phys. Chem. B. 103, 8410-8426 https://doi.org/10.1021/jp9917648
  18. Schider, G., J. R Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A Leitner, and F. R Aussenegg (2001), Optical properties of Ag and Au nanowire gratings, J. Appl. Phys. 90, 3825-3830 https://doi.org/10.1063/1.1404425
  19. Millstone J. E., S. Park, K. L. Shuford, L. Qin, G. C. Schatz, and C. A Mirkin (2005), Observation of a Quadrupole plasmon mode for a colloidal solution of gold nanoprisms, J. Am. Chem. Soc. 127, 5312-5313 https://doi.org/10.1021/ja043245a
  20. Malikova, N., I. Pastoriza-Santos, M. Schierhom, N. A. Kotov, and L. M. Liz-Marzan (2002), Layerby- layer assembled mixed spherical and planar gold nanoparticles : Control of interparticle interaction, Langmuir 18, 3694-3697 https://doi.org/10.1021/la025563y
  21. Kim, F., S. Connor, H. Song, T. Kuykendall, and P. Yang (2004), Platonic gold nanocrystals, Angew. Chem. Int. Edit. 116, 3759-3763 https://doi.org/10.1002/ange.200454216
  22. Nehl, C. L., H. Liao, and J. H. Hafner (2006), Optical properties of star-shaped gold nanoparticles, Nano Lett. 6, 683-688 https://doi.org/10.1021/nl052409y
  23. Nath, N. and A. Chilkoti (2002), A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface, Anal. Chem. 74, 504-509 https://doi.org/10.1021/ac015657x
  24. Nath, N. and A Chilkoti (2004), Label-free biosensing by surface plasmon resonance of nanoparticles on glass: Optimization of nanoparticle size, Anal. Chem. 76, 5370-5378 https://doi.org/10.1021/ac049741z
  25. Okamoto, T. and 1. Yamaguchi (2000), Local plasmon sensor with gold colloid monolayers depositεd upon glass substrates, Opt. Lett. 25, 372-374 https://doi.org/10.1364/OL.25.000372
  26. Frederix, F., J.-M. Friedt, K.-H. Choi, W. Laureyn, A Campitelli, D. MondeIaers, G. Maes, and G. Borghs (2003), Biosensing based on light absorption of nanoscaled gold and silver particles, Anal. Chem. 75, 6894-6900 https://doi.org/10.1021/ac0346609
  27. Haes, A J. and R. P. Van Duyne (2004), A unified view of propagating and localized surface plasmon resonance biosensors, Anal. Bioanal. Chem. 379, 920-930 https://doi.org/10.1007/s00216-004-2708-9
  28. Haes, A J. and R P. Van Duyne (2002), A nanoscale optical biosensor: Sensitivity and selectivity of an approach based on localized surface plasmon resonance spectroscopy of triangular silver nanoparticles, J. Am. Chem. Soc. 124, 10596-10604 https://doi.org/10.1021/ja020393x
  29. Riboh, J. c., A J. Haes, A D. McFarland, C. R. Yonzon, and R. P. Van Duyne (2003), A nanoscale optical biosensor Real-time immunoassay in physiological buffer enabled by improved nanoparticle adhesion, J. Phys. Chem. B. 107, 1772-1780 https://doi.org/10.1021/jp022130v
  30. Haes, A. J., S. Zou, G. C. Schatz, and R P. Van Duyne (2004), A nanoscale optical biosensor : The long range distance dependence of the localized surface plasmon resonance of noble metal nanoparicles, J. Phys. Chem. B. 108, 109-116 https://doi.org/10.1021/jp0361327
  31. Haes, A J., S. Zou, G. C. Schatz, and R. P. Van Duyne (2004), Nanoscale optical biosensor : Short range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles, J. Phys. Chem. B. 108, 6961-6968 https://doi.org/10.1021/jp036261n
  32. Sonnichsen, C. and A. P. Alivisatos (2005), Gold nanorods as novel nonbleaching plasmon-based orientation sensors for polarized single-particle microscopy, Nano Lett. 5, 301-304 https://doi.org/10.1021/nl048089k
  33. Pierrat, S., I. Zins, A Breivogel, and C. Sonnichsen (2007), Self-assembly of small gold colloids with functionalized gold nanorods, Nano Lett. 7, 259-263 https://doi.org/10.1021/nl062131p
  34. Reinhard, B. M., M. Siu, H. Agarwal, A. P. Alivisatos, and J. Liphardt (2005), Calibration of dynamic molecular rulers based on plasmon coupling betweεn gold nanoparticles, Nano Lett. 5, 2246-2252 https://doi.org/10.1021/nl051592s
  35. Skewis, L. R. and B. M Reinhard (2008), Spennidine modulated ribonuclease activity probed by RNA plasmon rulers, Nano Lett. 8, 214-220 https://doi.org/10.1021/nl0725042
  36. Maillard, M., M.-P. Pileni, S. Link, and M. A. El-Sayed (2004), Picosecond self-induced thermal lensing from colloidal silver nanodisks, J. Phys. Chem. B. 108, 5230-5234 https://doi.org/10.1021/jp049943z
  37. Jain, P. K., W. Qian, and M. A. El-Sayed (2006), Ultrafast cooling of photoexcited in gold nanopaπiclethiolated DNA conjugates involves the dissociation of the gold-thiol bond, J. Am. Chem. Soc. 128, 2426-2433 https://doi.org/10.1021/ja056769z
  38. Nikitin, P. I., A N. Grigorenko, A A beloglazov, M. V. Valeiko, A A. Savchuk, O. A Savchuk, G. Steiner, C. Kuhme, A Huebner, and R Salzer (2000), Surface plasmon resonance interferometry for micro-array biosensing, Sensor. Actuat. B-Chem. 85, 189-193 https://doi.org/10.1016/S0924-4247(00)00386-1
  39. Wu, C.-M., Z.-C. jian, S.-F. Joe, and L.-B. Chang (2003), High-sensitivity sensor based on surface plasmon resonance and heterodyne interferometry, Sensor. Actuat. B-Chem. 92, 133-136 https://doi.org/10.1016/S0925-4005(03)00157-6
  40. Mirkin, C. A., R. L. Letsinger, R. C. Mucic, and J. J. Storhoff (1996), A DNA-based method for rationally assembling nanoaprticles into macroscopic materials, Nature 382, 607-609 https://doi.org/10.1038/382607a0
  41. Bailey, R. C. and J. T. Hupp (2003), Micropatterned polymeric gratings as chemoresponsive volatile organic compound sensors : Imslications for analyte detection and identification via diffraction-based sensor arrays, Anal. Chem. 75, 2392-2398 https://doi.org/10.1021/ac026391c
  42. Bailey, R. c., G. A. Kwong, C. G. Radu, O. N. Witte, and J. R. Heath (2007), DNA-encoded antibody libraries : A unified platforrn for multiplexed cell sorting and detection of genes and proteins, J. Am. Chem. Soc. 129, 1959-1967 https://doi.org/10.1021/ja065930i
  43. Keating, C. D. (2005), Nanoscienlce enables ultrasensitive detection of Alzheimer's biomarker, P. Natl. Acad. Sci. USA. 102, 2263-2264 https://doi.org/10.1073/pnas.0500024102
  44. Patolsky, F., G. Zheng, and C. M. Lieber (2006), Nanowire-based biosnesors, Anal. Chem. 78, 4261-4269
  45. Endo, T., K. Kerrnan, N. Nagatani, H. M. Hiepa, D.-K. Kim, Y. Yonezawa, K. Nakano, and E. Tamiya (2006), Multiple label-free detection of antigen-antibody reaction using localized surface plasmon resonancebased core-shell structured nanoparticle layer nanochip, Anal. Chem. 78, 6465-6475 https://doi.org/10.1021/ac0608321
  46. Hiep, H. M., T. Endo, K. Kerrnan, M. Chikae, D.-K, Kim, S. Yamamura, Y. Takamura, and E. Tamiya (2007), A localized surface plasmon resonance based immunosensor for the detection of casein in milk, Sci. Thechnol. Adv. Mat. 8, 331-338 https://doi.org/10.1016/j.stam.2006.12.010
  47. Vestergaard, M., K. Kerrnan, D.-K. Kim, H. M. Hiep, and E. Tamiya (2008), Detection of Alzheimer's tau protein using localized surface plasmon resonance-based immunochip, Talanta 74, 1038-1042 https://doi.org/10.1016/j.talanta.2007.06.009
  48. Himmelhaus, M. and H. Takei (2000), Cap-shaped gold nanoparticles for an optical biosensor, Sensor. Actuat. B-Chem. 63, 24-30 https://doi.org/10.1016/S0925-4005(99)00393-7