Browse > Article
http://dx.doi.org/10.7850/jkso.2009.14.3.127

Estimate of Manganese and Iron Oxide Reduction Rates in Slope and Basin Sediments of Ulleung Basin, East Sea  

Choi, Yu-Jeong (School of Earth and Environmental Science/Research Institute of Oceanography, Seoul National University)
Kim, Dong-Seon (Climate Change & Coastal Disaster Research Department, KORDI)
Lee, Tae-Hee (Southern Coastal Environment Research Department, KORDI)
Lee, Chang-Bok (School of Earth and Environmental Science/Research Institute of Oceanography, Seoul National University)
Publication Information
The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY / v.14, no.3, 2009 , pp. 127-133 More about this Journal
Abstract
In order to determine organic carbon oxidation by manganese and iron oxides, six core sediments were obtained in slope and basin sediments of Ulleung Basin in East Sea. The basin sediments show high organic carbon contents (>2%) at the water depths deeper than 2,000 m; this is rare for deep-sea sediments, except for those of the Black Sea and Chilean upwelling regions. In the Ullleung Basin, the surface sediments were extremely enriched by Manganese oxides with more than 2%. Maximum contents of Fe oxides were found at the depth of $1{\sim}4cm$ in basin sediments. However, the high level of Mn and Fe oxides was not observed in slope sediment. Surface manganese enrichments (>2%) in Ulleung Basin may be explained by two possible mechanisms: high organic carbon contents and optimum sedimentation rates and sufficient supply of dissolved Manganese from slope to the deep basin. Reduction rates of iron and manganese oxides ranged from 0.10 to $0.24\;mmol\;m^{-2}day^{-1}$ and from 0.30 to $0.57\;mmol\;m^{-2}day^{-1}$, respectively. In Ulleung Basin sediments, $13{\sim}26%$ of organic carbon oxidation may be linked to the reduction of iron and manganese oxides. Reduction rates of metal oxides were comparable to those of Chilean upwelling regions, and lower than those of Danish coastal sediments.
Keywords
Ulleung Basin; Iron oxides; Manganese oxides; Reduction rates; Particle mixing rates; Organic carbon;
Citations & Related Records
연도 인용수 순위
  • Reference
1 이경은, 강동진, 김경렬, 2001. 동해의 탄산칼슘 포화도. 한국해양학회지, 6: 234-241
2 Aller, R.C and D.J. Demaster, 1984. Estimation of particle flux and reworking at the deep sea floor using $^{234}Th/^{238}U$ disequilibrium. Earth and Planetary Sci. Lett., 67: 308-318   DOI   ScienceOn
3 Boning, P., S. Cuypers, M. Grunwald, B. Schnetger and H.J. Brumsack, 2005. Geochemical characteristics of Chilean upwelling sediments at $36^{\circ}S$. Mar Geol., 220: 1-21   DOI   ScienceOn
4 Carpenter R., J.T. Bennett and M.L. Peterson, 1981. $^{210}Pb$ activities in and fluxes to sediments of the Washington continental slope and shelf. Geochim. Cosmochim. Acta., 45: 1155-1172   DOI   ScienceOn
5 Goldberg, E.D and M. Koide, 1962. Geochronological studies of deep sea sediments by the ionium/thorium method. Gcochím. Cosmochim. Acta., 26: 417-450   DOI   ScienceOn
6 Hebbeln, D., M. Marchant and G Wefer, 2000. Seasonal variations of the particle flux in the Peru-Chile current at $30^\circ$S under ‘normal' and E1 Nino conditions. Deep Sea Res II., 47: 2101-2128   DOI   ScienceOn
7 Lord, C.L. III., 1980. The chemistry and cycling of iron, manganese, and sulfur in salt marsh sediments. Ph. D. Thesis, University Delaware, 177pp
8 Myers, C.R and K. H. Neason, 1988. Microbial rcduction of manganese oxides: interactions with iron and sulfur Geochim. Cosmochim. Acta., 52: 2727-2732   DOI   ScienceOn
9 Schulz H.D., A. ahmke, U. Schinzel, K. Wallmann and M. Zabel, 1994. Early diagenetic processes, fluxes and reaction rates in sediments of the South Atlantic. Geochim. Cosmochim. Acta., 58:2041-2060   DOI   ScienceOn
10 Sundby, B and N. Silverberg, 1985. Manganese fluxes in the benthic boundary layer. Limnol Oceanogr., 30: 372-381   DOI   ScienceOn
11 Canfield, D.E., 1993, Organic matter oxidation in marine sediments. In Interactions of C, N, P, and S Biogeochemical Cycies(ed.R. WOLLAST, et al.) NATO-AR W. Springer Verlag
12 Canfield, D.E., B. Thamdrup and J.w. Hansen, 1993a. The anaerobic degradation of organic matter in Danish coastal sediments; lron reduction, manganese reduction, and sulfate reduction. Geochim. Cosmochim. Acta., 57: 3867-3883   DOI   ScienceOn
13 Cociasu, A., L. Dorogan, C. Humborg and L. Popa, 1996. Long-teml ecological changes in the Romanian coastal waters of the Black Sea. Mar Pollut Bull., 32: 32-38   DOI   ScienceOn
14 Mehra, O.P and M.L. Jackson, 1960. lron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium carbonate. Proceedings of the national conference on clays and clay mineralogy, 7: 317-327
15 천종화, 한상준, 정대교, 허 식, 박장준, 최동림, 1998. 울릉분지 북동부 해저수로 주변 퇴적층의 화산재층서. 지질학회지, 34:192-210
16 Bender, M.L and D.T. Heggie, 1984. Fate of organic carbon reaching the deep sea floor; a status report. Geochim. Cosmochim. Acta., 48: 977-986   DOI   ScienceOn
17 Bender, M., R. Jahnke, R. Weiss, W. Martin, D.T. Heggie, J. Orchardo and T. Sowers, 1989. Organic carbon oxidation and benthic nitrogen and silica dynamics in San Clemente Basin, a continental borderland site. Geochim. Cosmochim. Acta., 53: 685-697   DOI   ScienceOn
18 Lovley, D.R and D.J. Lonergan, 1990. Anaerobic oxidation of toluene, phenol, and p-cresol by the dissimilatory iron-reducing organism, GS-15. Appl. Environ. Microbiol., 56: 1858-1864   PUBMED
19 Brocker, W.S and T.H. Peng, 1982. Tracers in the Sea, Lamontdoherty Geological Observatory, Columbia University, New York, 690 pp
20 Aller, R.c., 1990. Bioturbation and manganese cycling in hemipelagic sediments. Phil. Trans. Roy. Soc. London A331 , pp. 51-68
21 Jaeger, J.M and C.A. Nittrouer, 1999. Sediment deposition in an Alaskan fjord: controls on the formation and preservation of sedimentary structures in Jcy Bay. J. Sedimentary Res., 69: 1011-1026   DOI
22 Rescbke S., V. Ittekkot and N. Panin, 2002. The nature of organic matter in the Danube river particles and north-westem Black Sea sediments. Estuarine Coastal Shelf Sci., 54: 563-574   DOI   ScienceOn
23 Thamdrup, B., 2000. Bacterial manganese and iron reduction in aquatic sediments. Adv. Microb. Ecol., 16; 41-84   ScienceOn
24 Cha, H.J., M.S. Choi, C.B. Lee and D.H. Shin, 2007. Geochemistry of surface sediments in the southwestem EastlJapan Sea. J. Asian Earth Sciences., 29: 685-697   DOI   ScienceOn
25 Pattan, J.N., 1993. Manganese micronodules: a possib1e indicator of sedimentary environment. Mar Geol., 113: 331-344   DOI   ScienceOn
26 KORDI 2003. Marine Ecosystem responses to climate variability in the East Sea. KORDI Tech Rep BSPE825-00-1495-3, 498pp
27 Lovley, D.R and E.J .P. Phillips, 1998a. Novel mode of microbial metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron and manganese. Appl. Environ. Microbiol. 54:1472-1480
28 Takahashi, K., N. Fujitani, M. Yanada and Y. Maita, 2000. Longtenn biogenic particle fluxes in the Bering Sea and thc central subarctic Pacific Ocean, 1990-1995. Deep Sea Res I., 47: 1723-1759   DOI   ScienceOn
29 Hyun, J.H., D. Kim, c.w. Shin, J.H. Noh, E.J. Yang, J.S. Mok, S.H. Kim, H.C. Kim and S. Yoo, 2009. Enhanced phytoplankton and bacterioplankton production coupled to coastal upwelling and an anticyclonic eddy in the Ulleung basin, East Sea. Aquat. Microb. Ecol., 54: 45-54   DOI   ScienceOn
30 Bemer, R.A., 1980. Early diagenesis. Princeton University Press, Princeton, 256pp
31 DeMaster, D.J and J.K. Cochran, 1982. P없ticlc mixing rates in deep sea sediments determine:d from excess $^{210}Pb$ and $^{32}Si$ profiles. Earth Planet. Sci. Lett., 61: 257-271   DOI   ScienceOn
32 Schubert, C.J., T.G. Ferdelmrul, B. Strotmann, 2000. Organic matter composition and sulfate reduction ratcs in sediment off Chile. Org Geochem., 31: 351-361   DOI   ScienceOn
33 Thamdrup, B and D.E. Canfield 1996. Pathways of carbon oxidation in continental margin sediments off central Chile. Limnol Oceanogr., 41:1629-1650.   DOI   ScienceOn
34 Canfield, D.E., B.B. Jorgensen, H. Fossing, Glud. R, J. Gundersen, N.B. Ramsing, J.w. Hansen, L.P. Nielsen and P.O.J. Hall, 1993b. Pathways of organic carbon oxidation in three continental margin sediments. Mar Geol., 113: 27-40   DOI   ScienceOn
35 Nealson, K.H and D. Saffarini, 1994. Iron and mangaJlese in anaerobic respiration: environmcntal significance, physiology, and regulation. Annu. Rev. Microbiol., 48: 311-343   DOI   ScienceOn
36 Chester, R., 1990. Marine Geochemistry. Unwin Hyman Ltd, 698 pp
37 Kato, T., M. Endo and M. Kayo, 1983. Vertical distribution of various elements in sediment cores from the Sea. Mar Geol., 53:277-290   DOI   ScienceOn
38 Froelich, P.N., GP. Klinkhammer, M.L. Bender, N.A. Luedtke, GR Heath, D. Cullen and P. Dauphin, 1979. Early oxidation of organic matter in pelagic sediments of the eastem equatorial Atlantìc: suboxic diagenesis. Geochim. Cosmochim. Acta., 43:1075-1090   DOI   ScienceOn
39 Masuzawa, T and Y. Kitano, 1978. Cyclic appearance ofreduced and oxidized sediments in a 10 m core from the Japan Sea. J. Earth Sciences of Nagoya University., 25: 1-10
40 Cho, Y.G, C.B. Lee, B.S. Kim and M.S. Choi, 1999. Geochemistry of surface sediments of1‘ the southem and westem coast of Korea. Mar Geol., 159: 111-129   DOI   ScienceOn
41 Hong, GH., S.H. Kim, C.S. Chung, D.J. Kang, D.H. Shin, H.J. Lee and S.J. Han, 1997. $^{210}Pb$-derived sediment accumulation rates in the southwestem East Sea (Sea of Japan). Geo Mar Lett., 17:126-132   DOI   ScienceOn
42 Cochran,J.K., 1995. Particle mixing rates in sediments of the eastem equatorial Pacific: Evidence from $^{210}Pb$,$^{239,240}Pu$ and $^{137}Cs$ distributions at MANOP sites. Gechim. Cosmochim. Acta., 49: 1195-1210   DOI   ScienceOn
43 Chen, C.T.A., S.L. Wang and A.S. Bychkov, 1995. Carbonate chemistry of the Sea of Japan. J. Geophys Res., 100:13737-13745   DOI