• Title/Summary/Keyword: Metal bond

Search Result 582, Processing Time 0.027 seconds

EFFECT OF COBALT-CHROMIUM ALLOY SURFACE TREATMENT WHEN BONDING WITH 4-META/MMA-TBB RESIN (Cobalt-Chromium 합금의 표면처리가 4-META/MMA-TBB 레진과의 접착에 미치는 영향)

  • Jin, Jae-Sik;Kim, Kyo-Han;Lee, Cheong-Hee;Jo, Kwang-Hun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.4
    • /
    • pp.510-525
    • /
    • 2000
  • The effects of pretreatment of Co-Cr alloy, including two adhesive primers that contain either MDP or MAC-10, and silicoating on the bond The result sobtained as follows; o Strength of 4-META/MMA-TBB resin were investigated using FT-IR, SEM, and EDAX. o In the SEM observation of surface morphologies, the sandblasted specimen exibited a very rough surface, whereas the surfaces of the two groups primed with either MDP or MAC-10 were covered with a layer of primer, and the surface morphology of the silicoated specimen remained almost the same after sandblasting. o Before the thermocycling tests, the group treated with MDP demonstrated the highest mean tensile bond strength and the sandblasted group showed the lowest bond strength. o After 20,000 thermocyling, the mean tensile bond strength of the sandblasted group exhibited a 50% reduction in bond strength, while the others showed a $20\sim30%$ reduction. o Observation of the metal-resin interface revealed that in all groups the resin permeated the rough surface formed by sandblasting thereby producing a mechanical bond between the metal and the resin. It was also found that thermocycling resulted in a gap formation at the metal-resin interface of the specimens, and the sandblasted group exhibited a larger gap width than the other groups. o In fracture mode, all specimens indicated a cohesive fracture within the resin before thermocycling. However, thermocyling produced adhesive failure at the edge of the resin-metal interface in most specimens. The sandblasted group, which exhibited the lowest bond strength after thormocycling, also demonstrated the largest area of adhesive failure.

  • PDF

EFFECT OF METAL PRIMER TREATMENT OF THE Au-Ag-PD ALLOY SURFACE ON THE METAL-RESIN BONDING (치과용 금-은-팔라디움 합금에 대한 프라이머 처리가 금속-레진 접착에 미치는 영향)

  • Lee Kang;Lee Cheong-Hee;Jo Kwang-Hun;Kim Kyo-Han
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.39 no.4
    • /
    • pp.417-432
    • /
    • 2001
  • The pcf metal primers on the bond strength and durability of 4-META/MMA-TBB resins adhered to an Au-Ag-Pd alloy. For this study, the specimens were divided into 8 groups as follows: Thermocyle 0 : (1) control group : sandblast, (2) Group I : sandblast + Cesead Opaque Primer; (3) Group II : sandblast + Metal Primer; (4) Group III : sandblast + V-Primer; Thermocyle 10,000 (5) control sandblast: (6) Group I : sandblast + Cesead Opaque Primer: (7) Group II : sandblast + Metal Primer; (8) Group III sandblast + V-Primer. The shear bond strength was determined using an Instron were observed with the use of scanning electron microscope. Finally, the strengths of bonded joints were evaluated with regard to their adherence energy using a wedge test. The results obtained were as follows ; (1) The shear bond strength of 4-META/MMA-TBB resin to the Au-Ag-Pd alloy was significantly improved in all the groups treated with the primers (p<0.05). (2) Regardless of the adhesive primers used, a significant difference was observed in the bond strength of the thermocycle 0 groups and 10,000 groups (p<0.05). (3) Both before and after thermocycling, the strongest bond strength between the resin an the alloy was obtained after treatment with a metal primer containing MEPS (p<0.05). (4) In the wedge test, the adherence energies of the control group and Group III decreased more rapidly than those of Group I and II during the 2nd day of storage in water.

  • PDF

Transition metal-mediated/catalyzed fluorination methodology developed in the 2000s

  • Bae, Dae Young;Lee, Eunsung
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.3 no.2
    • /
    • pp.122-128
    • /
    • 2017
  • In the 2000s, there has been a significant advance on carbon-fluorine (C-F) bond formation reactions via transition metal mediated or catalyzed methods. Of course, for the past 10 years, transition metal catalysis improves C-F bond formation in terms of practicality and even can be applied to C-18F bond formation reaction. In this mini-review, we summarize various transition metal mediated or catalyzed fluorination reactions, which were developed in the mid-2000s.

Shear bond strength and adhesive failure pattern in bracket bonding with plasma arc light (Plasma arc light를 이용한 bracket 부착시의 전단결합강도와 파절양상의 유형)

  • Yoo, Hyung-Seok;Oh, Young-Geun;Lee, Seung-Yeon;Park, Young-Chel
    • The korean journal of orthodontics
    • /
    • v.31 no.2 s.85
    • /
    • pp.261-270
    • /
    • 2001
  • The purpose of this study was to evaluate the clinical usefulness of plasma arc light which can reduce the curing time dramatically compared by shear bond strengths and failure patterns of the brackets bonded with visible light in direct bracket bonding. Some kinds of brackets were bonded with the Transbond$^{\circledR}$ to the human premolars which were embedded in the resin blocks according to the various conditions. After bonding, the shear bond strength was tested by Instron universal testing machine and in addition , the amount of residual adhesive remaining on the tooth after debonding was measured by the stereoscope and assessed with adhesive remnant index(ARI). The results were as follows : 1. When plasma arc light was used for bonding the brackets, the shear bond strength was clinically sufficient in both metal and ceramic brackets, but resin brackets showed significantly lower bond strength but which was clinically useful. 2. When metal brackets were bonded using visible light, there was no significant difference in shear bond strength due to the light-curing time and the bond strength was clinically sufficient. 3. When the adhesive failure patterns of brackets bonded with plasma arc light were observed by using the adhesive remnant index, the bond failure of the metal and resin bracket occurred more frequently at bracket-adhesive interface but the failure of the ceramic bracket occurred more frequently at enamel-adhesive interface. 4. There was no statistically significant difference of the shear bond strength and adhesive failure pattern between metal bracket bonded for 2 seconds by curing with plasma arc light and 10 seconds by curing with visible light. 6. When metal brackets were bonded using plasma arc light, the shear bond strength decreased as the distance from the light source increased. The above results suggest that plasma arc light can be clinically useful for bonding the brackets without fear of the decrease of the shear bond strength.

  • PDF

The Influence of Bonding Strength and Interface Characteristics to Bonding Agent and Veneer Ceramics on Metal-Ceramic Prosthetics (결합재와 베니어세라믹이 금속-세라믹 보철물의 전단결합강도와 계면특성에 미치는 영향)

  • Kim, Min-Jung;Choi, Sung-Min;Chung, In-Sung
    • Journal of Technologic Dentistry
    • /
    • v.33 no.4
    • /
    • pp.349-357
    • /
    • 2011
  • Purpose: In this study, for the reasons of observing the changes when using bonding agent with Ni-Cr alloy and Co-Cr alloy and using VM13 and Vintage MP ceramic which have the disparity in coefficient of thermal expansion, it is carried out to evaluate the characteristics of the bonding agent through the analysis of the interface between metal and ceramic and the analysis of bond strength by variable. Methods: The surface treatment was performed on the two kinds of alloy(Ni-Cr alloy and Co-Cr alloy) specimens, which were sandblasted and were treated with bonder application. The metal-ceramic interfaces were analyzed with EPMA in order to ionic diffusion, and the shear test was performed. Results: As a result of observation of metal-ceramic interfacial properties, it was observed that Cr atoms were spread from the alloy body to the ceramic floor in the specimen of Group B. It was also seen that Cr, W atoms were spread from the alloy body to the ceramic floor in the specimen of Group S. In consequence of observing Shear bond strength, it was calculated that the specimen of BSV was 27.75(${\pm}11.21$)MPa, BSM was 27.02(${\pm}5.23$)MPa, BCV was 30.20(${\pm}5.99$)MPa, BCM was 27.94(${\pm}10.76$)MPa, SSV was 20.83(${\pm}2.58$)MPa, SSM was 23.98(${\pm}3.94$)MPa, SCV was 32.32(${\pm}4.68$)MPa, and SCM was 34.54(${\pm}10.63$)MPa. Conclusion: In the metal-ceramic interface of Bellabond plus sample group, diffusion of Cr atoms was incurred and diffusion of C Cr atoms and W atoms in the sample group of $Starloy{(R)}\;C$ was observed. Using bonding agent showed the higher bond strength than using the sand blasting treatment. In the Bellabond plus alloys, the specimen group with the use of binding materials showed higher shear bond strength, but didn't show statistically significant differences (p>0.05). In the $Starloy{(R)}\;C$ alloys, the specimen group with the use of binding materials showed higher shear bond strength and statistically significant differences(p<0.05). In terms of VM13 ceramic, it was in the Bellabond plus alloys that the high shear bond strength was showed, but there's no statistically significant differences(p>0.05). In terms of Vintage MP ceramic, it was in the $Starloy{(R)}\;C$ alloys that the high shear bond strength was showed and statistically significant differences(p<0.05). Metal-ceramic to fracture of the shear strength measurements and an analysis of all aspects of military usage fracture of the composite, respectively.

The effect of contamination of the etched matal retainer on resin bonding strength (금속 유지장치의 오염이 레진 접착 결합력에 미치는 영향)

  • Park, Ha-Ok;Bang, Mong-Sook
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.18 no.3
    • /
    • pp.217-224
    • /
    • 2002
  • The purpose of this study was to evaluate the influence of saliva contamination on the resin bonding of the etched metal retainers. The test samples were made of Verabond, and divided into 3 groups. Retainers in group1 had normally etched metal surfaces. Retainers in group2 had normally etched metal surfaces which were saliva-contaminated for 30 seconds and cleaned with streaming, luke-warm for 1 minute and dried thoroughly. Retainers in group3 had normally etched metal surfaces which were saliva- contaminated for 30 seconds and dried thoroughly without water-cleansing. Each 3 group specimen was watched on SEM. A resin core, 5mm in diameter and 6mm in length, was made of Panavia using Teflon mold on the each specimen. These 3 groups were tested to evaluate shear bond strength, using universal testing machine. The results were as follows : 1. The shear bond strength showed no significant difference between group1 and group2. 2. The shear bond strength showed significant difference between group1 and group3. 3. The shear bond strength significant difference between group2 and group3. 4. Scanning electron microscope photographs of group1 and group2 showed no signs of contamination but of group3 showed somewhat contaminated.

The Effects of Various Metal Surface Treatments on the Shear Bond Strength between Titanium Denture Base and Relined Resins (타이타니움 의치상에 대한 다양한 금속표면처리제의 적용이 첨상레진과의 결합강도에 미치는 영향)

  • Eun, Jun-Young;Cho, In-ho;Lee, Jong-Hyuk
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.22 no.2
    • /
    • pp.137-148
    • /
    • 2006
  • The purpose of this study was to evaluate the effect of various metal surface treatments on the shear bond strength between titanium denture base and relined resins. The surfaces of commercially pure(cp) titanium were sandblasted with $50{\mu}m$ $Al_2O_3$ for 20 seconds and each group was treated with MR $Bond^{(R)}$, Alloy $Primer^{(R)}$, and Super-Bond $C&B^{(R)}$ accordingly. The specimens were completed by application of relining resins. The specimens were stored in room temperature. And the shear bond strength of the specimens were measured with the MTS universal testing $machine^{(R)}$. The results were as follows: 1. In comparison with the relining materials, $Kooliner^{(R)}$ groups showed statistically higher shear bond strength than Tokuyama Rebase $II^{(R)}$ groups(p<0.05). 2. Comparing shear bond strength, according to surface treatment, Super-bond $C&B^{(R)}$ groups showed the highest bond strength and were significantly higher than the other three groups(p<0.05). Alloy $Primer^{(R)}$ groups showed no significant difference with the MR $Bond^{(R)}$ groups, but was significantly higher than the sandblasting-only groups(p<0.05). 3. Comparing surface treatment in each groups, for two types of relining resin, the group which applies $Kooliner^{(R)}$ and Super-bond $C&B^{(R)}$ showed the highest bond strength and showed significant difference compared to the other groups(p<0.05). When using Tokuyama Rebase $II^{(R)}$, Super-bond C&B group showed the highest bond strength, but there were no significant difference compared to the Alloy $Primer^{(R)}$ group. In this limited study, applying $Kooliner^{(R)}$ and Super-Bond $C&B^{(R)}$ after sandblasting is considered to be advantageous for relining of titanium base dentures.

Shear bond strength of veneering porcelain to zirconia and metal cores

  • Choi, Bu-Kyung;Han, Jung-Suk;Yang, Jae-Ho;Lee, Jai-Bong;Kim, Sung-Hun
    • The Journal of Advanced Prosthodontics
    • /
    • v.1 no.3
    • /
    • pp.129-135
    • /
    • 2009
  • STATEMENT OF PROBLEM. Zirconia-based restorations have the common technical complication of delamination, or porcelain chipping, from the zirconia core. Thus the shear bond strength between the zirconia core and the veneering porcelain requires investigation in order to facilitate the material's clinical use. PURPOSE. The purpose of this study was to evaluate the bonding strength of the porcelain veneer to the zirconia core and to other various metal alloys (high noble metal alloy and base metal alloy). MATERIAL AND METHODS. 15 rectangular ($4\times4\times9mm$) specimens each of zirconia (Cercon), base metal alloy (Tillite), high noble metal alloy (Degudent H) were fabricated for the shear bond strength test. The veneering porcelain recommended by the manufacturer for each type of material was fired to the core in thickness of 3mm. After firing, the specimens were embedded in the PTFE mold, placed on a mounting jig, and subjected to shear force in a universal testing machine. Load was applied at a crosshead speed of 0.5mm/min until fracture. The average shear strength (MPa) was analyzed with the oneway ANOVA and the Tukey's test ($\alpha$= .05). The fractured specimens were examined using SEM and EDX to determine the failure pattern. RESULTS. The mean shear strength ($\pm\;SD$) in MPa was 25.43 ($\pm\;3.12$) in the zirconia group, 35.87 ($\pm\;4.23$) in the base metal group, 38.00 ($\pm\;5.23$) in the high noble metal group. The ANOVA showed a significant difference among groups, and the Tukey' s test presented a significant difference between the zirconia group and the metal group. Microscopic examination showed that the failure primarily occurred near the interface with the residual veneering porcelain remaining on the core. CONCLUSION. There was a significant difference between the metal ceramic and zirconia ceramic group in shear bond strength. There was no significant difference between the base metal alloy and the high noble metal alloy.

Synthesis, Spectral, Characterization, DFT and Biological Studies of New 3-[(3-Chlorophenyl)-hydrazono]-pentane-2,4-dione Metal Complexes

  • Sadeek, Sadeek A.;Zordok, Wael A.;El-Farargy, Ahmed F.;El-Desoky, Sameh I.
    • Journal of the Korean Chemical Society
    • /
    • v.58 no.2
    • /
    • pp.169-178
    • /
    • 2014
  • A new series of metal complexes of V(IV), Pd(II), Pt(IV), Ce(IV) and U(VI) with 3-[(3-chlorophenyl)-hydrazono]-pentane-2,4-dione (Cphpd) were synthesized and characterized by elemental analysis, molar conductivity, magnetic moment measurements, UV-vis, FT-IR and $^1H$ NMR as well as TG-DTG techniques. The data indicated that the Cphpd acts as a bidentate ligand through the hydrazono nitrogen and one keto oxygen. The kinetic parameters have been evaluated by using Coats Redfern (CR) and Horowitz-Metzeger (HM) methods. The thermodynamic data reflected the thermal stability for all complexes. The calculated bond length and the bond stretching force constant, F(U=O), values for $UO_2$ bond are $0.775{\AA}$ and $286.95Nm^{-1}$. The bond lengths, bond angles, dipole moment and the lowest energy model structure of the complexes have been determined with DFT calculations. The antimicrobial activity of the synthesized ligand and its complexes were screened.

SHEAR BOND STRENGTH OF RESIN ADHESIVE CEMENT TO ENAMEL AND Ni-Cr-Be ALLOY (접착성 레진 시멘트 와 법랑질 및 닉켈-크롬 합금 간의 전단결합강도)

  • Lee, Sun-Hyung;Yang, Jae-Ho;Chung, Hun-Young;Jang, Il-Seong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.35 no.2
    • /
    • pp.365-372
    • /
    • 1997
  • This study was executed to measure the shear bond strength of Panavia EX and Panavia 21 when the Ni-Cr-Be alloy castings were cemented to the enamel surfaces with these cements. The cast metal plates of Ni-Cr-Be alloy were sandblasted and cemented to acid etched enamel surface with Panavia EX or Panavia 21. Their shear bond strength were measured with Instron Universal Testing machine. Within the limits of this study, following conclusions were withdrawn. 1. The mean shear bond strength were 26.85.7MPa, in Panavia EX and 28.35.2MPa, in Panavia 21. 2. t-Test revealed no statistical significance between two groups(.05 level) 3. Macroscopically, bond failures were revealed compound fracture at metal and enamel interfaces, in cases of both cements, as the cement attached partly on both metal and enamel surface.

  • PDF