DOI QR코드

DOI QR Code

Transition metal-mediated/catalyzed fluorination methodology developed in the 2000s

  • Bae, Dae Young (Department of Chemistry, Pohang University of Science and Technology) ;
  • Lee, Eunsung (Department of Chemistry, Pohang University of Science and Technology)
  • Received : 2017.12.12
  • Accepted : 2017.12.27
  • Published : 2017.12.30

Abstract

In the 2000s, there has been a significant advance on carbon-fluorine (C-F) bond formation reactions via transition metal mediated or catalyzed methods. Of course, for the past 10 years, transition metal catalysis improves C-F bond formation in terms of practicality and even can be applied to C-18F bond formation reaction. In this mini-review, we summarize various transition metal mediated or catalyzed fluorination reactions, which were developed in the mid-2000s.

Keywords

References

  1. Sakakura T, Chaisupakitsin M, Hayashi T, Tanaka M. Efficient acid fluoride synthesis via carbonylation of organic halides. J Organomet Chem 1987;334:205-211. https://doi.org/10.1016/0022-328X(87)80050-5
  2. Okano T, Harada N, Kiji J. Catalytic Acid Fluoride Synthesis via Carbonylation of Organic Bromides in the Presence Potassium Fluoride. Bull Chem Soc Jpn 1992;65:1741-1743. https://doi.org/10.1246/bcsj.65.1741
  3. Hatanaka Y, Fukushima S, Hiyama T. Carbonylative coupling reaction of organofluorosilanes with organic halides promoted by fluoride ion and palldium catalyst. Tetrahedron 1992;48:2113-2126. https://doi.org/10.1016/S0040-4020(01)88878-5
  4. Prichard WW. U.S. Patent 2696503, 1954.
  5. Mador IL, Scheben JA. U.S. Patent 3452090, 1969.
  6. Prichard WW. U.S. Patent 3632643, 1972.
  7. Grushin VV. Palladium Fluoride Complexes: one more step toward metal-mediated C-F bond formation. Chemistry. 2002;8:1006-1014. https://doi.org/10.1002/1521-3765(20020301)8:5<1006::AID-CHEM1006>3.0.CO;2-M
  8. Komiya S, Akai Y, Tanaka K, Yamamoto T, Yamamoto A. Reductive elimination of aryl carboxylates from acyl(aryloxy)nickel(II) and -palladium(II) complexes. Organometallics 1985;4:1130-1136. https://doi.org/10.1021/om00125a033
  9. Grushin VV, Alper H. Indirect Formation of Carboxylic Acids via Anhydrides in the Palladium-Catalyzed Hydroxycarbonylation of Aromatic Halides. J Am Chem Soc 1995;117:4305-4315. https://doi.org/10.1021/ja00120a012
  10. Grushin VV, Alper H. Transformations of Chloroarenes, Catalyzed by Transition-Metal Complexes. Chem Rev 1994;94:1047-1062. https://doi.org/10.1021/cr00028a008
  11. Grushin VV, Alper H. Activation of Otherwise Unreactive C-Cl Bonds. Top Organomet Chem 1999;3:193-226.
  12. Hintermann L, Togni A. Catalytic Enantioselective Fluorination of ${\beta}$-Ketoesters. Angew Chem Int Ed 2000;39:4359-4362. https://doi.org/10.1002/1521-3773(20001201)39:23<4359::AID-ANIE4359>3.0.CO;2-P
  13. Bobbio C, Gouverneur V. Catalytic asymmetric fluorinations. Org Biomol Chem 2006;4:2065-2075. https://doi.org/10.1039/b603163c
  14. Ma J-A, Cahard D. Asymmetric fluorination, trifluoromethylation, and perfluoroalkylation reactions. 2004;104:6119-6146. https://doi.org/10.1021/cr030143e
  15. Ibrahim H, Togni A. Enantioselective halogenation reactions. Chem Commun 2004;0:1147-1155.
  16. Barthazy P, Togni A, Mezzetti A. Catalytic Fluorination by Halide Exchange with 16-Electron Ruthenium(II) Complexes. X-ray Structure of [$Tl({\mu}-F)_2Ru(dppe)_2$]$PF_6$. Organometallics 2001;20:3472-3477. https://doi.org/10.1021/om010288g
  17. Bonaccorsi C, Mezzetti A. Ruthenium Complexes with Chiral Tetradentate PNNP Ligands in Asymmetric Catalytic Atom-Transfer Reactions. Curr Org Chem 2006;10:225-240. https://doi.org/10.2174/138527206775192951
  18. Hamashima Y, Yagi K, Takano H, Tamas L, Sodeoka M. An efficient enantioselective fluorination of various beta-ketoesters catalyzed by chiral palladium complexes. J Am Chem Soc 2002;124:14530-14531. https://doi.org/10.1021/ja028464f
  19. Hamashima Y, Takano H, Hotta D, Sodeoka M. Immobilization and reuse of Pd complexes in ionic liquid: efficient catalytic asymmetric fluorination and Michael reactions with beta-ketoesters. Org Lett 2003;5:3225-3228. https://doi.org/10.1021/ol035053a
  20. Ma J-A, Cahard D. Copper(II) triflate-bis(oxazoline)- catalysed enantioselective electrophilic fluorination of ${\beta}$-ketoesters. Tetrahedron: Asymmetry 2004;15:1007-1011. https://doi.org/10.1016/j.tetasy.2004.01.014
  21. Ma J-A, Cahard D. Screening of chiral catalysts for enantioselective electrophilic fluorination of ${\beta}$-ketoesters. J Fluorine Chem 2004;125:1357-1361. https://doi.org/10.1016/j.jfluchem.2004.04.005
  22. Huang D, Koren PR, Folting K, Davidson ER, Caulton KG. Facile and Reversible Cleavage of C−F Bonds. Contrasting Thermodynamic Selectivity for $Ru-CF_2H vs F-Os$ ═CFH. J Am Chem Soc 2000;122:8916-8931. https://doi.org/10.1021/ja001646u
  23. Akana JA, Bhattacharyya KX, Muller P, Sadighi JP. Reversible C−F bond formation and the Aucatalyzed hydrofluorination of alkynes. J Am Chem Soc 2007;129:7736-7737. https://doi.org/10.1021/ja0723784
  24. Hull KL, Anani WQ, Sanford MS. Palladium-catalyzed fluorination of carbon-hydrogen bonds. J Am Chem Soc 2006;128:7134-7135. https://doi.org/10.1021/ja061943k
  25. Furuya T, Ritter T. Carbon−fluorine reductive elimination from a high-valent palladium fluoride. J Am Chem Soc 2008;130:10060-10061. https://doi.org/10.1021/ja803187x
  26. Furuya T, Kaiser HM, Ritter T. Palladium-mediated fluorination of arylboronic acids. Angew Chem Int Ed Engl. 2008;47:5993-5996. https://doi.org/10.1002/anie.200802164
  27. Watson DA, Su M, Teverovskiy G, Zhang Y, García- Fortanet J, Kinzel T, Buchwald SL. Formation of ArF from LPdAr(F): catalytic conversion of aryl triflates to aryl fluorides. Science 2009;325:1661-1664. https://doi.org/10.1126/science.1178239
  28. Yandulov DV, Tran NT. Aryl-fluoride reductive elimination from Pd(II): feasibility assessment from theory and experiment. J Am Chem Soc 2007;129:1342-1358. https://doi.org/10.1021/ja066930l
  29. Grushin VV, Marshall WJ. Ar−F Reductive Elimination from Palladium(II) Revisited. Organometallics 2007;26:4997-5002. https://doi.org/10.1021/om700469k
  30. Bobbio C, Gouverneur V. Catalytic asymmetric fluorinations. Org Biomol Chem 2006;4:2065-2075. https://doi.org/10.1039/b603163c
  31. Shibata N, Kohno J, Takai K, Shimaru T, Nakmura S, Toru T, Kanemasa S. Highly enantioselective catalytic fluorination and chlorination reactions of carbonyl compounds capable of two-point binding. Angew Chem Int Ed Engl. 2005;44:4204-4207. https://doi.org/10.1002/anie.200501041
  32. Hamashima Y, Suzuki T, Takano H, Shimura Y, Sodeoka M. Catalytic enantioselective fluorination of oxindoles. J Am Chem Soc 2005;127: 10164-10165. https://doi.org/10.1021/ja0513077
  33. Shibata N, Kohno J, Takai K, Shimaru T, Nakmura S, Toru T, Kanemasa, S. Highly enantioselective catalytic fluorination and chlorination reactions of carbonyl compounds capable of two-point binding. Angew Chem Int Ed Engl. 2005;44:4204-4207. https://doi.org/10.1002/anie.200501041
  34. Lal GS, Pez GP, Syvret RG. Electrophilic NF Fluorinating Agents. Chem Rev 1996;96:1737-1756. https://doi.org/10.1021/cr941145p
  35. Subramanian MA, Manzer LE. A "greener" synthetic route for fluoroaromatics via copper (II) fluoride. Science 2002;297:1665. https://doi.org/10.1126/science.1076397
  36. Janmanchi KM, Dolbier WR Jr. Highly Reactive and Regenerable Fluorinating Agent for Oxidative Fluorination of Aromatics. Org Process Res Dev 2008;12:349-354. https://doi.org/10.1021/op700266y
  37. Dick AR, Sanford MS. Transition metal catalyzed oxidative functionalization of carbon-hydrogen bonds. Tetrahedron 2006;62:2439-2463. https://doi.org/10.1016/j.tet.2005.11.027
  38. Deprez NR, Kalyani D, Krause A, Sanford MS. Room temperature palladium-catalyzed 2-arylation of indoles. J Am Chem Soc 2006;128:4972-4973. https://doi.org/10.1021/ja060809x
  39. Desai LV, Malik HA, Sanford MS. Oxone as an inexpensive, safe, and environmentally benign oxidant for C-H bond oxygenation. Org Lett 2006;8:1141-1144. https://doi.org/10.1021/ol0530272
  40. Dick AR, Kampf JW, Sanford MS. Unusually stable palladium(IV) complexes: detailed mechanistic investigation of C−O bond-forming reductive elimination. J Am Chem Soc 2005;127:12790-12791. https://doi.org/10.1021/ja0541940
  41. Ball ND, Sanford MS. Synthesis and reactivity of a monosigma- aryl palladium(IV) fluoride complex. J Am Chem Soc 2009;131:3796-3797. https://doi.org/10.1021/ja8054595
  42. Wang X, Mei T.-S, Yu J-Q. Versatile Pd(OTf)2 x 2 H2Ocatalyzed ortho-fluorination using NMP as a promoter. J Am Chem Soc 2009;131:7520-7521. https://doi.org/10.1021/ja901352k
  43. Kaspi AW, Yahav-Levi A, Goldberg I, Vigalok A. Xenon difluoride induced aryl iodide reductive elimination: a simple access to difluoropalladium(II) complexes. Inorg Chem 2008;47:5-7. https://doi.org/10.1021/ic701722f
  44. Furuya T, Strom AE, Ritter T. Silver-mediated fluorination of functionalized aryl stannanes. J Am Chem Soc 2009;131:1662-1663. https://doi.org/10.1021/ja8086664
  45. Furuya T, Ritter T. Fluorination of boronic acids mediated by silver(I) triflate. Org Lett 2009;11:2860-2863. https://doi.org/10.1021/ol901113t
  46. Grushin VV. U.S. Patent 7202388, 2007.
  47. Grushin VV, Marshall WJ. Ar−F Reductive Elimination from Palladium(II) Revisited. Organometallics 2007;26:4997-5002. https://doi.org/10.1021/om700469k