• Title/Summary/Keyword: Metal Thickness

Search Result 1,965, Processing Time 0.029 seconds

Comparison of the marginal fit of POM restorations with different thickness of metal copings (코핑 두께의 차이에 따른 POM 보철물의 변연적합도 연구)

  • Lim, Hyung-Tek
    • Journal of Technologic Dentistry
    • /
    • v.34 no.2
    • /
    • pp.135-143
    • /
    • 2012
  • Purpose: The purpose of this in vitro study was to compare the marginal fit of POM restorations with 3 different thickness of metal coping. Methods: 2.0mm Occlusal reduction, 1.0mm preparation of axial wall with 6degree taper, and chamfer margin was prepared a maxillary first premolar on dentiform. Duplicate prepared die and, make 30 individual dies with Ni-Cr metal. Make 3 groups of 30 press ceramic on Metal crown with different thickness of metal coping; 10 of 0.1mm, 10 of 0.3mm, 10 of 0.5mm thickness metal coping. The marginal fit of the crowns was evaluated 50 points per 1 crown, around the crown margin circumference under a optical microscope at original magnification ${\times}100$. A 1-way analysis of variance (ANOVA) was used to compare data. Results: The mean marginal discrepancy for POM with 0.1mm metal copings was $72.56{\mu}m$, $67.83{\mu}m$ for 0.3mm metal coping POMs, and $72.56{\mu}m$ for 0.5mm metal coping POM. The 1-way ANOVA showed significant difference among 3 groups. Conclusion: The marginal fit of pressed-on-metal (POMs) was best with 0.3mm thickness of metal coping, fallowing by 0.1mm, and 0.5mm in the order.

A Study on the Brazing Bondinf Conditions of A1050 Using Al-Si Alloy Filler Metal (Al-Si계 필러메탈을 이용한 A1050알루미늄의 브레이징 접합조건에 관한 연구)

  • 김정일;김영식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.17 no.1
    • /
    • pp.66-72
    • /
    • 1993
  • The brazing of Al to Al using Al-Si alloy filler metal was performed under different bonding conditions such as ratio of lap length to plate thickness, surface roughness and joint clearance of the lap joint. The adopted thickness of the base metal in this experiments were two kinds of 4mm and 7mm which were most commonly used in various field. Influence of several bonding conditions of Al/Al joint was quantitavely evaluated by bonding strength test, and microstructural analysis at the interlayer were performed by optical microscope. From above experiments, the optimum bonding conditions of the brazing bonding of Al/Al using Al-Si alloy filler metal was determined. The major results obtained are as follows. 1) The fracture occurs at brazed joint in the conditions of that the ratio of lap length to plate thickness is less than 2 in case of 7mm plate thickness. 2) The ratio of lap length to plate thickness which the fracture occurs at base metal is decreased with the decreasing of the plate thickness. 3) The joint strength is not affected by the surface roughness and joint clearance of the brazed part. 4) The heat-treatment of the brazed joint contribute to eliminate the boundary between the base metal and filler metal. However, the joint strength is not affected by the heat-treatment.

  • PDF

Fatigue Crack Propagation Behavior of Steel Plate of Laser Welded Tailored Blank (테일러드 블랭크 레이저 용접 강판의 피로균열 전파 거동)

  • Han, Moon-Sik;Lee, Yang-Sub
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.3
    • /
    • pp.120-126
    • /
    • 2006
  • In this paper, we investigated the characteristics of fatigue fracture on TB(Tailored Blank) weldment by comparing the fatigue crack propagation characteristics of base metal with those of TB welded sheet used for vehicle body panels. We also investigated the influence of center crack on the fatigue characteristic of laser weld sheet of same thickness. We conducted an experiment on fatigue crack propagation on the base metal specimen of 1.2mm thickness of cold-rolled metal sheet(SPCSD) and 2.0mm thickness of hot-rolled metal sheet(SAPH440) and 1.2+2.0mm TB specimen. We also made an experiment on fatigue crack propagation on 2.0+2.0mm and 1.2+1.2mm thickness TB specimen which had center crack. The characteristics of fatigue crack growth on the base metal were different from those on 1.2+2.0mm thickness TB specimen. The fatigue crack growth rate of the TB welded specimens is slower in low stress intensity factor range$({\Delta}K)$ region and faster in high ${\Delta}K$ region than that of the base metal specimens.

Metal-insulator Transition in Low Dimensional $La_{0.75}Sr_{0.25}VO_3$ Thin Films

  • Huynh, Sa Hoang;Dao, Tran M.;Mondal, Partha S.;Takamura, Y.;Arenholz, E.;Lee, Jai-Chan
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.19.1-19.1
    • /
    • 2011
  • We report on the metal-insulator transition that occurs as a function of film thickness in ultrathin $La_{0.75}Sr_{0.25}VO_3$ films. The metal-insulator transition displays a critical thickness of 5 unit cell. Above the critical thickness, metallic films exhibit a temperature driven metal-insulator transition with weak localization behavior. With decreasing film thickness, oxygen octahedron rotation in the films increases, causing enhanced electron-electron correlation. The electron-electron correlations in ultrathin films induce the transition from metal to insulator in addition to Anderson localization.

  • PDF

A Study on the Electrical Conductivity and Electromagnetic Pulse Shielding Characteristics of Metal Sprayed Coating (금속 용사 피막의 전기전도도 및 전자파 차폐 특성에 관한 연구)

  • Jang, Jong-Min;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.8-9
    • /
    • 2020
  • In this study, the electrical conductivity and shielding effect were evaluated according to the type of metal and the thickness of Metal sprayed coating. The metals used for the test are Cu, Cu-Ni and Cu-Zn, and the thicknesses were 100, 200, 500 um. Each metal sprayed coating was evaluated for electrical conductivity and electromagnetic shielding effect. When the thickness was 200 ㎛ or more, shielding effect 80 dB or more was satisfied at 1 GHz. However, in the case of Cu-Ni, there is little electrical conductivity at a thickness of 100 um or less due to the generated voids, and electromagnetic wave shielding performance cannot be expected. Therefore, To ensure electromagnetic shielding effect of structures, it is considered that the minimum thickness of metal spraying coating should be 200 um.

  • PDF

Electrical and Optical Properties of Transparent Conducting Films having GZO/Metal/GZO Hybrid-structure; Effects of Metal Layer(Ag, Cu, Al, Zn) (GZO/Metal/GZO 하이브리드 구조 투명 전도막의 전기적, 광학적 특성; Ag, Cu, Al, Zn 금속 삽입층의 효과)

  • Kim, Hyeon-Beom;Kim, Dong-Ho;Lee, Gun-Hwan;Kim, Kang-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.3
    • /
    • pp.148-153
    • /
    • 2010
  • Transparent conducting films having a hybrid structure of GZO/Metal/GZO were prepared on glass substrates by sequential deposition using DC magnetron sputtering. Silver, copper, aluminum and zinc thin films were used as the intermediate metal layers in the hybrid structure. The electrical and optical properties of hybrid transparent conducting films were investigated with varying the thickness of metal layer or GZO layers. With increasing the metal thickness, hybrid films showed a noticeable improvement of the electrical conductivity, which is mainly dependent on the electrical property of the metal layer. GZO(40 nm)/Ag(10 nm)/GZO(40 nm) film exhibits a resistivity of $5.2{\times}10^{-5}{\Omega}{\cdot}cm$ with an optical transmittance of 82.8%. For the films with Zn interlayer, only marginal reduction in the resistivity was observed. Furthermore, unlike other metals, hybrid films with Zn interlayer showed a decrease in the resistivity with increasing the GZO thickness. The optimal thickness of GZO layer for anti-reflection effect at a given thickness of metal (10 nm) was found to be critically dependent on the refractive index of the metal. In addition, x-ray diffraction analysis showed that the insertion of Ag layer resulted in the improvement of crystallinity of GZO films, which is beneficial for the electrical and optical properties of hybrid-type transparent conducting films.

Effect of Zirconia Core Thickness on the Tone Blocking of Discolored Tooth and Metal Post (지르코니아 코어의 두께에 따른 변색치와 메탈 포스트의 색조차단 효과)

  • O, Seon-Mi;Lee, Chae-Hyun
    • Journal of Technologic Dentistry
    • /
    • v.32 no.4
    • /
    • pp.327-335
    • /
    • 2010
  • Purpose: The purpose of this study was to investigate the correlation between zirconia core thickness and color tone blocking of discolored tooth and metal post. Methods: For this study, we made 20-porcelain sample and 4-metal sample( liechtenstein IPS e.max) bonded to zirconia core of different thickness with cement(Relyx ARC-3M USA)for produce discolored. We measured the color-spectral characteristics, using Shadepilot equipment(Degudent USA).We measured it with Shadepilot equipment set by automated average mode in 3 times And applied the average value obtained from 2 times of measurement in the middle of each sample. Results: As a result of analysing color-spectral characteristics on zirconia core sample, Depending on the thickness of zirconia core, the value of brightness(${\Delta}L*$:color-spectral characteristic) was increased within limited range, value of ${\Delta}a*$, ${\Delta}b*$ was decrease. Conclusion: Consequently, we obtained the following results: Changes of sample color were observed depending on the thickness of zirconia, but the range of change did not exceed the scope range of shade guide. The case of metal posts, shade guide color D2 were observed in 0.5mm of zirconia core thickness. As a result, in case of porcelain, increasing the zirconia thickness of 0.3mm or more is unnecessary for color blocking effect, in case of metal post, considering the discolored tooth, thickness of zirconia with at least 0.5mm or more is recommended.

SPECTROPHOTOMETRIC ANALYSIS OF THE INFLUENCE OF METAL SUBSTRATE ON THE COLOR OF CERAMIC (금속하부구조물이 도재의 색조에 미치는 영향에 대한 분광측색분석)

  • Lee Su-Ok;Woo Yi-Hyung;Choi Dae-Gyun;Kwon Keung-Rok
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.2
    • /
    • pp.148-159
    • /
    • 2003
  • Statement of problem Metal-ceramic restorations have been used extensively by dental clinicians for nearly 40 years. Strength an functional ability of metal-ceramic restorations are proved to be satisfying, However esthetics and biocompatibility of metal alloy which is used in metal-ceramic restoration is not ideal. Using pure gold as an alternative, have advantage of esthetics, biocompatibility over conventional metal alloy. But there had been little article which studied on the color effect of pure gold on fual porcelain color. Purpose The purpose of this study was to spectrophotometrically evaluate the difference between color of metal alloy(Au-Pt, Ni-Cr) and pure gold, during color masking procedure with opaque porcelain and to analyze the differences, Material and Methods Three types of metal - base metal(Ni-Cr), high gold alloy(Au-Pt), pure gold(GES) - specimen were fabricated 1cm in diameter. Four steps were established - after finishing, after pre-coditioning, after application of first opaque porcelain(0.08mm in thickness), after application of second opaque porcelain(0.15mm in thickness)- and tested color with spectrophotometer every each steps and analyzed with $CIEL^*a^*b^*$ color order system. One-Way ANOVA test was used to and out if there were significant differences between groups tested and Shaffe multiple comparison was used to identify where the differences were. Results 1. After finishing and pre-conditioning, pure gold(GES) group showed most high values in $L^*,a^*,b^*$. 2. After application of first opaque porcelain(0.08mm in thickness), after application of second opaque porcelain(0.15mm in thickness), pure gold(GES) group showed the least difference in $L^*,a^*,b^*$ values and the lowest ${\Delta}E$ value(${\Delta}E$=0.63). 3. After application of first opaque porcelain and after application of second opaque porcelain differences that were significant (P<0.05) between groups were found only in $a^*$ values. 4. Base metal alloy group showed the lowest $a^*$ value in test after application of first opaque porcelain and the highest value in test after application of first opaque porcelain Conclusion Pure gold group and high gold group showed higher $a^*$ values than base metal group when tested after 0.08mm thickness of opaque porcelain was applied and pure gold group showed much similar $L^*,a^*,b^*$ values between 0.08mm thickness and 0.15mm thickness of opaque porcelain. This meant that pure gold was more easily masked by opaque porcelain than the other two groups.

Mechanical strength analysis for functionally graded composite plates (경사기능 복합재료 판의 기계적 강도해석)

  • Na, Kyung-Su;Kim, Ji-Hwan
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.66-69
    • /
    • 2005
  • Mechanical strength of functionally graded composite plates that composed of ceramic, functionally graded material and metal layers is investigated using 3-D finite element method. In FGM layer, material properties are assumed to be varied continuously in the thickness direction according to a simple power law distribution in terms of the volume fraction of a ceramic and metal. The 3-D finite element model is adopted by using an IS-node solid element to analyze more accurately the variation of material properties in the thickness direction. Numerical results are compared with those of the previous works. In addition, the displacements, the tensile stresses and the compressive stresses are analyzed for the variation of FGM thickness ratio and volume fraction distribution.Mechanical strength of functionally graded composite plates that composed of ceramic, functionally graded material and metal layers is investigated using 3-D finite element method. In FGM layer, material properties are assumed to be varied continuously in the thickness direction according to a simple power law distribution in terms of the volume fraction of a ceramic and metal. The 3-D finite element model is adopted by using an IS-node solid element to analyze more accurately the variation of material properties in the thickness direction. Numerical results are compared with those of the previous works. In addition, the displacements, the tensile stresses and the compressive stresses are analyzed for the variation of FGM thickness ratio and volume fraction distribution.

  • PDF

A Study on Fatigue Fracture Behavior of Laser Beam Welding and Steel with Different Materials ($CO_2$ 레이저 용접 이종재료강의 피로파괴거동에 관한 연구)

  • Han, M.S.;Suh, J.;Lee, J.H.;Kim, J.O.;Jeon, S.M.
    • Laser Solutions
    • /
    • v.9 no.2
    • /
    • pp.1-9
    • /
    • 2006
  • In this paper, we investigated the characteristics of fatigue fracture on TB(Tailored Blank) weldment by comparing the fatigue crack propagation characteristics of base metal with those of TB welded sheet used for vehicle body panels. We also investigated the influence of center crack on the fatigue characteristic of laser weld sheet of same thickness. We conducted an experiment on fatigue crack propagation on the base metal specimen of 1.2mm thickness of cold-rolled metal sheet(SPCSD) and 2.0mm thickness of hot-rolled metal sheet(SAPH440) and 1.2+2.0mm TB specimen. We also made an experiment on fatigue crack propagation on 2.0+2.0mm and 1.2+1.2mm thickness TB specimen which had center crack. The characteristics of fatigue crack growth on the base metal were different from those on 1.2+2.0mm thickness TB specimen. The fatigue crack growth rate of the TB welded specimens is slower in low stress intensity factor range $({\Delta}K)$ region and faster in high${\Delta}K$ region than that of the base metal specimens. The slant crack angle slightly influenced the crack propagation of the TB specimen of 2.0+2.0mm thinkness.

  • PDF