• 제목/요약/키워드: Metabolite

검색결과 1,472건 처리시간 0.032초

흰쥐를 이용한 profenofos의 경구투여 및 피부도포 후 뇨 중 대사물질 측정 (Determination of Urinary Metabolite of Profenofos after Oral Administration and Dermal Application to Rats)

  • 민경진;조영주;이인선;차춘근
    • 한국식품위생안전성학회지
    • /
    • 제17권1호
    • /
    • pp.20-25
    • /
    • 2002
  • 흰쥐를 이용하여 profenofos의 경구투여 및 피부도포 후 뇨 중 대사물질과 뇨 중 대사물질의 시간별 배설량을 GC/MS로 측정한 결과는 다음과 같다. Profenofos를 경구투여 후 뇨 중 대사물질은 4-bromo-2-chloropheno이며, GC/MS로 분석한 결과 4-bromo-2-chlorophenol는 m/z=208에서 분자이온을 추정하였다. Profenofos를 피부도포 후 뇨 중 대사물질은 경구투여와 동일한 대사물질인 4-bromo-2-chloropheno이었다. 모 화합물이나 4-bromo-2-chlorophenol외 다른 대사물질은 검출되지 않았다. Profenofos를 경구투여 후 뇨 중 대사물질인 4-bromo-2-chlorophenol의 시간별 배설량은 12시간에 가장 많은 양이 배설되었다. 또한 48시간 내 95%가 배설되었고 72시간 이후는 대사물질이 배설되지 않았다. 한편 profenofos를 피부도포 후 뇨 중 대사물질인 4-bromo-2-chlorophenol의 시간별 배설량은 12시간에 가장 많은 양이 배설되었으며, 48시간 내 87%가 배설되었고 96시간 이후는 대사물질이 배설되지 않았다. Profenofos 의 뇨 중 대사물질인 4-bromo-2-chlorophenol는 profenofos의 생체모니터링 지표물질로서 사용될 수 있을 것이라고 생각되며, 뇨 중 4-bromo-2-chlorophenol의 시간별 배설량을 측정한 결과 경구투여보다 피부도포 후 배설이 지연된 다는 것을 알 수 있었다.

Simultaneous Characterization of Sofalcone and Its Metabolite in Human Plasma by Liquid Chromatography -Tandem Mass Spectrometry

  • Han, Sang-Beom;Jang, Moon-Sun;Lee, Hee-Joo;Lee, Ye-Rie;Yu, Chong-Woo;Lee, Kyung-Ryul;Kim, Ho-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권5호
    • /
    • pp.729-734
    • /
    • 2005
  • A sensitive and selective method for quantitation of sofalcone and its active metabolite in human plasma has been established using liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI/MS/MS). Plasma samples were transferred into 96-well plate using an automated sample handling system and spiked with 10 $\mu$L of 2 $\mu$g/mL $d_3$-sofalcone and $d_3$-sofalcone metabolite solutions (internal standard), respectively. After adding 0.5 mL of acetonitrile to the 96-well plate, the plasma samples were then vortexed for 30 sec. After centrifugation, the supernatant was transferred into another 96-well plate and completely evaporated at 40 ${^{\circ}C}$ under a stream of nitrogen. Dry residues were reconstituted with mobile phase and were injected into a $C_{18}$ reversed-phase column. The limit of quantitation of sofalcone and its metabolite was 2 ng/mL, using a sample volume of 0.2 mL for analysis. The reproducibility of the method was evaluated by analyzing 10 replicates over the concentration range of 2 ng/mL to 1000 ng/mL. The validation experiments of the method have shown that the assay has good precision and accuracy. Sofalcone and its metabolite produced a protonated precursor ion ([M+H]$^+$) of m/z 451 and 453, and a corresponding product ion of m/z 315 and 317, respectively. Internal standard ($d_3$-sofalcone and $d_3$-sofalcone metabolite) produced a protonated precursor ion ([M+H]$^+$) of m/z 454 and 456 and a corresponding product ion of m/z 315 and 317, respectively. The method has been successfully applied to a pharmacokinetic study of sofalcone and its active metabolite in human plasma.

In Vitro and in Vivo Metabolism of Salsolinol, on Endogenous Isoquinoline Neurotoxin, in Rats

  • Rhee, Hee-Kyung;Kwon, Oh-Seung;Ryu, Jae-Chun
    • 한국환경성돌연변이발암원학회지
    • /
    • 제21권1호
    • /
    • pp.30-33
    • /
    • 2001
  • Salsolinol (1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline, SAL), a dopaminergic isoquinoline neurotoxin, has been implicated to contribute the etiology of Parkinson's disease and neuropathology of chronic alcoholism. In our previous results, SAL was reported to have the mutagenicity and clastogenicity not in bacteria but in mammalian cells, and its genotoxic potential was known to be potentiated in the presence of rat liver S-9 fraction. This may indicate that some metabolite(s) of SAL was involved in the mutagenic potentials. To investigate the SAL metabolites, the metabolism studies of SAL were conducted in vitro rat liver S-9 fraction and in vivo using rats by high performance liquid chromatography and gas chromatography/mass spectrometry. The methylated metabolite of SAL was found in urine of rats, while the same methylating form of metabolite was not produced from the in vitro metabolism system using rat liver S-9 fraction.

  • PDF

Evaluation of the Biological Activities of Marine Bacteria Collected from Jeju Island, Korea, and Isolation of Active Compounds from their Secondary Metabolites

  • Kim, Hyun-Soo;Zhang, Chao;Lee, Ji-Hyeok;Ko, Ju-Young;Kim, Eun-A;Kang, Nalae;Jeon, You-Jin
    • Fisheries and Aquatic Sciences
    • /
    • 제17권2호
    • /
    • pp.215-222
    • /
    • 2014
  • To explore marine microorganisms with medical potential, we isolated and identified marine bacteria from floats, marine algae, animals, and sponges collected from Jeju Island, Korea. We isolated and identified 21 different strains from the marine samples by 16S rRNA analysis, cultured them in marine broth, and extracted them with ethyl acetate (EtOAc) to collect secondary metabolite fractions. Next, we evaluated their anti-oxidative and anti-inflammatory effects. Among the 21 strains, the secondary metabolite fraction of Bacillus badius had both strong antioxidant and anti-inflammatory activity, and thus was selected for further experiments. An antioxidant compound detected from the secondary metabolite fraction of B. badius was purified by preparative centrifugal partition chromatography (n-hexane:EtOAc:methanol:water, 4:6:4:6, v/v), and identified as diolmycin A2. Additionally, diolmycin A2 strongly inhibited nitric oxide production. Thus, we successfully identified a significant bioactive compound from B. badius among the bacterial strains collected from Jeju Island.

Correlation analysis of human urinary metabolites related to gender and obesity using NMR-based metabolic profiling

  • Kim, Ja-Han;Park, Jung-Dae;Park, Sung-Soo;Hwang, Geum-Sook
    • 한국자기공명학회논문지
    • /
    • 제16권1호
    • /
    • pp.46-66
    • /
    • 2012
  • Metabolomic studies using human urine have shown that human metabolism is altered by a variety of environmental, cultural, and physiological factors. Comprehensive information about normal human metabolite profiles is necessary for accurate clinical diagnosis of disease and for disease prevention and treatment. In this study, metabolite correlation analyses, using $^1H$ nuclear magnetic resonance (NMR) spectroscopy coupled with multivariate statistics, were performed on human urine to compare metabolic differences based on gender and/or obesity in healthy human subjects. First, we applied partial least squares discriminant analysis to the NMR spectral data set to verify the data's ability to discriminate by gender and obesity. Then, the differences in metabolite-metabolite correlation between male and female, and between normal and high body mass index (obese) subjects were investigated through pairwise correlations. Creatine and several metabolites, including isoleucine, trans-aconitate, and trimethylamine N-oxide (TMAO), exhibited different quantitative relationships depending on gender. Dimethylamine had a different correlation with glycine and TMAO, based on gender. The correlation of TMAO with amino acids was considerably lower in obese, compared to normal, subjects. We expect that the results will shed light on the metabolic pathways of healthy humans and will assist in the accurate diagnosis of human disease.

LC-MS/MS Profiling-Based Secondary Metabolite Screening of Myxococcus xanthus

  • Kim, Ji-Young;Choi, Jung-Nam;Kim, Pil;Sok, Dai-Eun;Nam, Soo-Wan;Lee, Choong-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권1호
    • /
    • pp.51-54
    • /
    • 2009
  • Myxobacteria, Gram-negative soil bacteria, are a well-known producer of bioactive secondary metabolites. Therefore, this study presents a methodological approach for the high-throughput screening of secondary metabolites from 4 wild-type Myxococcus xanthus strains. First, electrospray ionization mass spectrometry (ESI-MS) was performed using extracellular crude extracts. As a result, 22 metabolite peaks were detected, and the metabolite profiling was then conducted using the m/z value, retention time, and MS/MS fragmentation pattern analyses. Among the peaks, one unknown compound peak was identified as analogous to the myxalamid A, B, and C series. An analysis of the tandem mass spectrometric fragmentation patterns and HR-MS identified myxalamid K as a new compound derived from M. xanthus. In conclusion, LC-MS/MS-based chemical screening of diverse secondary metabolites would appear to be an effective approach for discovering unknown microbial secondary metabolites.

Liquid Chromatography-Mass Spectrometry-Based Chemotaxonomic Classification of Aspergillus spp. and Evaluation of the Biological Activity of Its Unique Metabolite, Neosartorin

  • Lee, Mee Youn;Park, Hye Min;Son, Gun Hee;Lee, Choong Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권7호
    • /
    • pp.932-941
    • /
    • 2013
  • This work aimed to classify Aspergillus (8 species, 28 strains) by using a secondary metabolite profile-based chemotaxonomic classification technique. Secondary metabolites were analyzed by liquid chromatography ion-trap mass spectrometry (LC-IT-MS) and multivariate statistical analysis. Most strains were generally well separated from each section. A. lentulus was discriminated from the other seven species (A. fumigatus, A. fennelliae, A. niger, A. kawachii, A. flavus, A. oryzae, and A. sojae) with partial least-squares discriminate analysis (PLS-DA) with five discriminate metabolites, including 4,6-dihydroxymellein, fumigatin, 5,8-dihydroxy-9-octadecenoic acid, cyclopiazonic acid, and neosartorin. Among them, neosartorin was identified as an A. lentulus-specific compound that showed anticancer activity, as well as antibacterial effects on Staphylococcus epidermidis. This study showed that metabolite-based chemotaxonomic classification is an effective tool for the classification of Aspergillus spp. with species-specific activity.

Varying Inocula Permutations (Aspergillus oryzae and Bacillus amyloliquefaciens) affect Enzyme Activities and Metabolite Levels in Koji

  • Gil, Hye Jeong;Lee, Sunmin;Singh, Digar;Lee, Choong Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권12호
    • /
    • pp.1971-1981
    • /
    • 2018
  • In this study, we investigated the altered enzymatic activities and metabolite profiles of koji fermented using varying permutations of Aspergillus oryzae and/or Bacillus amyloliquefaciens. Notably, the protease and ${\beta}$-glucosidase activities were manifold increased in co-inoculated (CO) koji samples (co-inoculation of A. oryzae and B. amyloliquefaciens). Furthermore, gas chromatography-mass spectrometry (GC-MS)-based metabolite profiling indicates that levels of amino acids, organic acids, sugars, sugar alcohols, fatty acids, nucleosides, and vitamins were distinctly higher in CO, SA (sequential inoculation of A. oryzae, followed by B. amyloliquefaciens), and SB (sequential inoculation of B. amyloliquefaciens, followed by A. oryzae). The multivariate principal component analysis (PCA) plot based on GC-MS datasets indicated a clustered pattern for MA and MB (koji samples inoculated either with A. oryzae or B. amyloliquefaciens) across PC2 (20.0%). In contrast, the CO, SA, and SB metabolite profiles displayed segregated patterns across PLS1 (22.2%) and PLS2 (21.1%) in the partial least-square discriminant analysis (PLS-DA) model. Intriguingly, the observed disparity in the levels of primary metabolites was engendered largely by higher relative levels of sugars and sugar alcohols in MA, SA, and CO koji samples, which was commensurate with the relative amylase activities in respective samples. Collectively, the present study emphasizes the utility of integrated biochemical and metabolomic approaches for achieving the optimal permutation of fermentative inocula for industrial koji preparation.

Comparison of Traditional and Commercial Vinegars Based on Metabolite Profiling and Antioxidant Activity

  • Jang, Yu Kyung;Lee, Mee Youn;Kim, Hyang Yeon;Lee, Sarah;Yeo, Soo Hwan;Baek, Seong Yeol;Lee, Choong Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권2호
    • /
    • pp.217-226
    • /
    • 2015
  • Metabolite profiles of seven commercial vinegars and two traditional vinegars were performed by gas chromatography time-of-flight mass spectrometry with multivariate statistical analysis. During alcohol fermentation, yeast, nuruk, and koji were used as sugars for nutrients and as fermentation substrates. Commercial and traditional vinegars were significantly separated in the principal component analysis and orthogonal partial least square discriminant analysis. Six sugars and sugar alcohols, three organic acids, and two other components were selected as different metabolites. Target analysis by ultra-performance liquid chromatography quadruple-time-of-flight mass spectrometry and liquid chromatography-ion trap-mass spectrometry/mass spectrometry were used to detect several metabolites having antioxidant activity, such as cyanidin-3-xylosylrutinoside, cyanidin-3-rutinoside, and quercetin, which were mainly detected in Rural Korean Black raspberry vinegar (RKB). These metabolites contributed to the highest antioxidant activity measured in RKB among the nine vinegars. This study revealed that MS-based metabolite profiling was useful in helping to understand the metabolite differences between commercial and traditional vinegars and to evaluate the association between active compounds of vinegar and antioxidant activity.