Browse > Article
http://dx.doi.org/10.4014/jmb.1212.12068

Liquid Chromatography-Mass Spectrometry-Based Chemotaxonomic Classification of Aspergillus spp. and Evaluation of the Biological Activity of Its Unique Metabolite, Neosartorin  

Lee, Mee Youn (Department of Bioscience and Biotechnology, Konkuk University)
Park, Hye Min (Department of Bioscience and Biotechnology, Konkuk University)
Son, Gun Hee (Department of Bioscience and Biotechnology, Konkuk University)
Lee, Choong Hwan (Department of Bioscience and Biotechnology, Konkuk University)
Publication Information
Journal of Microbiology and Biotechnology / v.23, no.7, 2013 , pp. 932-941 More about this Journal
Abstract
This work aimed to classify Aspergillus (8 species, 28 strains) by using a secondary metabolite profile-based chemotaxonomic classification technique. Secondary metabolites were analyzed by liquid chromatography ion-trap mass spectrometry (LC-IT-MS) and multivariate statistical analysis. Most strains were generally well separated from each section. A. lentulus was discriminated from the other seven species (A. fumigatus, A. fennelliae, A. niger, A. kawachii, A. flavus, A. oryzae, and A. sojae) with partial least-squares discriminate analysis (PLS-DA) with five discriminate metabolites, including 4,6-dihydroxymellein, fumigatin, 5,8-dihydroxy-9-octadecenoic acid, cyclopiazonic acid, and neosartorin. Among them, neosartorin was identified as an A. lentulus-specific compound that showed anticancer activity, as well as antibacterial effects on Staphylococcus epidermidis. This study showed that metabolite-based chemotaxonomic classification is an effective tool for the classification of Aspergillus spp. with species-specific activity.
Keywords
Aspergillus lentulus; liquid chromatography ion-trap mass spectrometry (LC-IT-MS); secondary metabolite; neosartorin; antibacterial activity; anticancer activity;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Varga J, Rigo K, Toth B, Teren J, Jozakiewicz Z. 2003. Evolutionary relationships among Aspergillus species producing economically important mycotoxins. Food Technol. Biotechnol. 41: 29-36.
2 Ren H, Tian L, Gu Q, Zhu W. 2006. Secalonic acid D; a cytotoxic constituent from marine lichen-derived fungus Gliocladium sp. T31. Arch. Pharm. Res. 29: 59-63.   DOI   ScienceOn
3 Rodrigues P, Santos C, Venancio A, Lima N. 2011. Species identification of Aspergillus section Flavi isolates from Portuguese almonds using phenotypic, including MALDITOF-ICMS and molecular approaches. J. Appl. Microbiol. 111: 877-892.   DOI   ScienceOn
4 Siegel I, Liu TL, Yaghoubzadeh E, Keskey TS, Gleicher N. 1987. Cytotoxic effects of free fatty acids on ascites tumor cells. J. Natl. Cancer Inst. 78: 271-277.
5 Sun HF, Li XM, Meng L, Cui CM, Gao SS, Li CS, et al. 2012. Asperolides A-C, tetranorlabdane diterpenoids from the marine alga-derived endophytic fungus Aspergillus wentii EN-48. J. Nat. Prod. 75: 148-152.   DOI   ScienceOn
6 Turner NW, Subrahmanyam S, Piletsky SA. 2009. Analytical methods for determination of mycotoxins: a review. Anal. Chim. Acta 632: 168-180.   DOI   ScienceOn
7 Wadman MW, de Vries RP, Kalkhove SIC, Vel-dink GA, Vliegenthart JFG. 2009. Characterization of oxylipins and dioxygenase genes in the asexual fungus Aspergillus niger. BMC Microbiol. 9: 59.   DOI   ScienceOn
8 Waksman SA, Horning ES, Spencer EL. 1943. Two antagonistic fungi, Aspergillus fumigatus and Aspergillus clavatus, and their antibiotic substances. J. Bacteriol. 45: 233-248.
9 Wang Y, Zheng J, Liu P, Wang W, Zhu W. 2011. Three new compounds from Aspergillus terreus PT06-2 grown in a high salt medium. Mar. Drugs 9: 1368-1378.   DOI
10 Yen GC, Chang YC, Su SW. 2003. Antioxidant activity and active compounds of rice koji fermented with Aspergillus candidus. Food Chem. 83: 49-54.   DOI   ScienceOn
11 Zain ME, Razak AA, EI-Sheikh HH, Soliman HG, Khalil AM. 2009. Influence of growth medium on diagnostic characters of Aspergillus and Penicillium species. Afr. J. Microbiol. Res. 3: 280-286.
12 Carolis DE, Posteraro B, Lass-Florl C, Vella A, Florio AR, Torelli R, et al. 2012. Species identification of Aspergillus, Fusarium and Mucorales with direct surface analysis by matrixassisted laser desorption ionization time-of-flight mass spectrometry. Clin. Microbiol. Infect. 18: 475-484.   DOI   ScienceOn
13 Zeng RS, Luo SM, Shi YH, Shi MB, Tu CY. 2001. Physiological and biochemical mechanism of allelopathy of secalonic acid F on higher plants. Agron. J. 93: 72-79.   DOI   ScienceOn
14 Cvetnic Z, Pepeljnjak S. 1998. Production of cyclopiazonic acid by aflatoxigenic and non-aflatoxigenic strains of Aspergillus flavu. Nahrung 42: 321-323.   DOI   ScienceOn
15 Avantaggiato G, Solfrizzo M, Tosi L, Zazzerini A, Fanizzi FP, Visconti A. 1999. Isolation and characterization of phytotoxic compounds produced by Phomopsis helianthi. Nat. Toxins 7: 119-127.   DOI   ScienceOn
16 Bennett JW, Klich M. 2003. Mycotoxins. Clin. Microbiol. Rev. 16: 497-516.   DOI   ScienceOn
17 Chang PK, Ehrlich KC, Fujii I. 2009. Cyclopiazonic acid biosynthesis of Aspergillus flavus and Aspergillus oryzae. Toxins 1: 74-99.   DOI
18 Arora DK. 2003. Fungal Biotechnology in Agricultural, Food, and Environmental Applications, pp. 51-53. Marcel Dekker, Inc., New York, USA.
19 Arora DS, Chandra P. 2011. Antioxidant activity of Aspergillus fumigatus. ISRN Pharmacol. 2011: 1-11.
20 Dunn WB, Ellis DI. 2005. Metabolomics: current analytical platforms and methodologies. Trends Anal. Chem. 24: 285-294.   DOI   ScienceOn
21 Frisvad JC, Rank C, Nielsen NF, Larsen TO. 2009. Metabolomics of Aspergillus fumigatus. Med. Mycol. 47: 53-71.   DOI   ScienceOn
22 Elaasser MM, Abdel-Aziz MM, EI-Kassas RA. 2011. Antioxidant, antimicrobial, antiviral and antitumor activities of pyranone derivative obtained from Aspergillus candidus. J. Microbiol. Biotechnol. Res. 1: 5-17.
23 Elias BC, Said S, de Albuquerque S, Pupo MT. 2006. The influence of culture conditions on the biosynthesis of secondary metabolites by Penicillium verrucosum Dierck. Microbiol. Res. 161: 273-280.   DOI   ScienceOn
24 Espinel-Ingroff A, Arthington-Skaggs B, Iqbal N, Ellis D, Pfaller MA, Messer S, et al. 2007. Multicenter evaluation of a new disk agar diffusion method for susceptibility testing of filamentous fungi with voriconazole, posaconazole, itraconazole, amphotericin B, and caspofungin. J. Clin. Microbiol. 45: 1811-1820.   DOI   ScienceOn
25 Kabara JJ, Swieczkowski DM, Conley AJ, Truant JP. 1972. Fatty acids and derivatives as antimicrobial agents. Antimicrob. Agents Chemother. 2: 23-28.   DOI   ScienceOn
26 Geiser DM, Klich MA, Frisvad JC, Peterson SW, Varga J, Samson RA. 2007. The current status of species recognition and identification in Aspergillus. Stud. Mycol. 59: 1-10.   DOI   ScienceOn
27 Goker H, Ozden S, Yildiz S, Boykin DW. 2005. Synthesis and potent antibacterial activity against MRSA of some novel 1,2-disubstituted-1H-benzimidazole-N-alkylated-5-carboxamidines. Eur. J. Med. Chem. 40: 1062-1069.   DOI   ScienceOn
28 Hong SB, Go SJ, Shin HD, Frisvad JC, Samson RA. 2005. Polyphasic taxonomy of Aspergillus fumigatus and related species. Mycologia 97: 1316-1329.   DOI   ScienceOn
29 Kurobane I, Iwahashi S, Fukuda A. 1987. Cytostatic activity of naturally isolated isomers of secalonic acids and their chemically rearranged dimers. Drugs Exp. Clin. Res. 13: 339-344.
30 Kang DJ, Son GH, Park HM, Kim JY, Choi JN, Kim HY, et al. 2013. Culture condition-dependent metabolite profiling of Aspergillus fumigatus with antifungal activity. Fungal Biol. 117: 211-219.   DOI   ScienceOn
31 Kang DJ, Kim JY, Choi JN, Liu KH, Lee CH. 2011. Chemotaxonomy of Trichoderma spp. using mass spectrometrybased metabolite profiling. J. Microbiol. Biotechnol. 21: 5-13.   DOI   ScienceOn
32 Kim HY, Park HM, Lee CH. 2012. Mass spectrometry-based chemotaxonomic classification of Penicillium species (P. echinulatum, P. expansum, P. solitum, and P. oxalicum) and its correlation with antioxidant activity. J. Microbiol. Methods 90: 327-335.   DOI   ScienceOn
33 Lamrani K, Lakhtar H, Ismaili-Alaoui M, Ettalibi M, Boiron P, Augur C, et al. 2008. Production of Fumagillin by Aspergillus fumigatus isolated from traditional trituration units, "Maasra," in Morocco. Micol. Apl. Int. 20: 35-41.
34 Larsen TO, Smedsgaard J, Nielsen KF, Hansen MA, Samson RA, Frisvad JC. 2007. Production of mycotoxins by Aspergillus lentulus and other medically important and closely related species in section Fumigati. Med. Mycol. 45: 225-232.   DOI   ScienceOn
35 Mabe S, Eller J, Champney WS. 2004. Structure-activity relationships for three macrolide antibiotics in Haemophilus influenzae. Curr. Microbiol. 49: 248-254.   DOI
36 Lommen A. 2009. Metalign: interface-driven, versatile metabolomics tool for hyphenated full-scan mass spectrometry data preprocessing. Anal. Chem. 81: 3079-3086.   DOI   ScienceOn
37 Losito I, Monaci L, Aresta A, Zambonin CG. 2002. LC-ion trap electrospray MS-MS for the determination of cyclopiazonic acid in milk samples. Analyst 127: 499-502.   DOI   ScienceOn
38 Polizzi V, Adams A, Malysheva SV, Saeger SD, Peteghem CV, Moretti A, et al. 2012. Identification of volatile markers for indoor fungal growth and chemotaxonomic classification of Aspergillus species. Fungal Biol. 116: 941-953.   DOI   ScienceOn
39 Machida M, Gomi K. 2010. Aspergillus: Molecular Biology and Genomics, pp. 8-9. Caister Academic Press, Norfolk, UK.
40 Mazur P, Nakanishi K, El-Zayat AAE, Champe SP. 1991. Structure and synthesis of sporogenic psi factors from Aspergillus nidulans. J. Chem. Soc. Chem. Commun. 20: 1486-1487.
41 Proksa B, Uhrin D, Liptaj T, Sturdikova M. 1998. Neosartorin, an ergochrome biosynthesized by Neosatorya fischeri. Phytochemistry 48: 1161-1164.   DOI   ScienceOn
42 Rai M, Kovics G. 2010. Progress in Mycology, pp. 95-97. Scientific Publishers, Jodhpur, India.
43 Ramos HP, Said S. 2011. Modulation of biological activities produced by an endophytic fungus under different culture conditions. Adv. Biosci. Biotechnol. 2: 443-449.   DOI
44 Rank C, Klejnstrup ML, Petersen LM, Kildgaard S, Frisvad JC, Gotfredsen CH, et al. 2012. Comparative chemistry of Aspergillus oryzae (RIB40) and A. flavus (NRRL 3357). Metabolites 2: 39-56.   DOI