Determination of Urinary Metabolite of Profenofos after Oral Administration and Dermal Application to Rats

흰쥐를 이용한 profenofos의 경구투여 및 피부도포 후 뇨 중 대사물질 측정

  • 민경진 (계명대학교 공중보건학과) ;
  • 조영주 (농업과학기술원 환경생태과) ;
  • 이인선 (계명대학교 TMR센터) ;
  • 차춘근 (계명대학교 공중보건학과)
  • Published : 2002.03.01

Abstract

This study was aimed to determine the urinary metabolite of profenofos, one of the organophos-phorus pesticides, as the biomarkers of exposure. Urine samples were collected fort 24 hours in metabolic cages after oral administration and dermal application of profenofos to rats. Identification of the derivatized urinary metabolite was determined by GC/MS and excretion time courses of the urinary metabolite was analyzed by GC/MS. Urinary metabolite of profenofos, 4-bromo-2-chlorophenol, was detected in rats urine both after oral administration and dermal application of profenofos. Parent compound was not detected in the experiment. In GC/MS, the mass spectral confirmation for 4-bromo-2-chlorophenol ion was identified at m/z 208.4-bromo-2-chlorophenol was excreted within 48 hours and 72 hours after oral administration and dermal application of profenofos, respectively. In this study, the same urinary metabolite of profenofos was detected both in oral and dermal exposure. Generally, excretion of the urinary metabolite after oral administration was detected faster than after dermal application. It is suggested that urinary 4-bromo-2-chlorophenol could be used as the biomarkers of exposure to profenofos.

흰쥐를 이용하여 profenofos의 경구투여 및 피부도포 후 뇨 중 대사물질과 뇨 중 대사물질의 시간별 배설량을 GC/MS로 측정한 결과는 다음과 같다. Profenofos를 경구투여 후 뇨 중 대사물질은 4-bromo-2-chloropheno이며, GC/MS로 분석한 결과 4-bromo-2-chlorophenol는 m/z=208에서 분자이온을 추정하였다. Profenofos를 피부도포 후 뇨 중 대사물질은 경구투여와 동일한 대사물질인 4-bromo-2-chloropheno이었다. 모 화합물이나 4-bromo-2-chlorophenol외 다른 대사물질은 검출되지 않았다. Profenofos를 경구투여 후 뇨 중 대사물질인 4-bromo-2-chlorophenol의 시간별 배설량은 12시간에 가장 많은 양이 배설되었다. 또한 48시간 내 95%가 배설되었고 72시간 이후는 대사물질이 배설되지 않았다. 한편 profenofos를 피부도포 후 뇨 중 대사물질인 4-bromo-2-chlorophenol의 시간별 배설량은 12시간에 가장 많은 양이 배설되었으며, 48시간 내 87%가 배설되었고 96시간 이후는 대사물질이 배설되지 않았다. Profenofos 의 뇨 중 대사물질인 4-bromo-2-chlorophenol는 profenofos의 생체모니터링 지표물질로서 사용될 수 있을 것이라고 생각되며, 뇨 중 4-bromo-2-chlorophenol의 시간별 배설량을 측정한 결과 경구투여보다 피부도포 후 배설이 지연된 다는 것을 알 수 있었다.

Keywords

References

  1. 농약공업협회: 99' 농약년보. 농약공업협회 (1999)
  2. 정영호, 박영선: 농약학. 전국농업기술자협회, 문선사, (1990)
  3. Levi, P. E.: Modem toxicology. Elsevier, New York, 185-232 (1987)
  4. Zenz: Occupational medicine. 2nd, Medical Publishers, Chicago. (1988)
  5. Aprea, C, Sciarra, G., Orsi, D., Boccalon, P., Sartorelli, P. and Sartorelli, E.. : Urinary excretion of alkylphosphates in the general population (Italy). The Science of the Total Environment, 177, 37-41 (1996) https://doi.org/10.1016/0048-9697(95)04857-X
  6. Draper, W. M., Wijekoon, D. and Stephens, R. D.: Determina-tion of malathion urinary metabolites by isotope dillution ion trap GC/MS. J. Agric. Food Chern., 39, 1796-1801 (1991) https://doi.org/10.1021/jf00010a021
  7. Fenske, R. A. and Leffingwell, J. T.: Method for the determi-nation of dialkyl phosphate metabolites in urine for studies of human exposure to malatjion. J. Agric. Food Chern., 37, 995-998 (1989) https://doi.org/10.1021/jf00088a039
  8. Park, S. S., Pyo, H., Lee, K. J., Park, S. J. and Park, T. K.: The analysis of common metabolites of organophosphorus pesticides in urine by gas chromatographylmass spectrometry. Bull. Korean Chem. Soc., 19, 45-50 (1998)
  9. Nutley, B. P. and Cocker, J.: Biological monitoring of workers occupationally exposed to organophosphorus pesticides. Pestic. Sci., 38, 315-322 (1993) https://doi.org/10.1002/ps.2780380406
  10. Franklin, C. A., Fenske, R. A, Greenhalgh, R., Mathieu, L., Denley, H. V., Leffingwell, J. T., Spear, R. C: Correlation of urinary pesticide metabolite excretion with estimated dermal contact in the course of occupational exposure to guthion. J. of Toxicology and Environmental Health, 7, 715-731 (1981) https://doi.org/10.1080/15287398109530014
  11. Maroni, M., Fait, A. and Colosio, C.: Risk assessment and management of occupational exposure to pesticides. Toxicology Letters, 107, 145-153 (1999) https://doi.org/10.1016/S0378-4274(99)00041-7
  12. He, F.: Biological monitoring of exposure to pesticides: current issues. Toxicology Letters, 108, 277-283 (1999) https://doi.org/10.1016/S0378-4274(99)00099-5
  13. Wester, R. C, Sedik, L., Melendres, J., Logan, E, Maibach, H. I. and Russell, I.: Percutaneous absorption of diazinon in humans. Fd. Chem. Toxic., 31, 569-572 (1993) https://doi.org/10.1016/0278-6915(93)90206-E
  14. Richardson, E. R. and Seiber, J. N.: Gas chromatographic determination of organophosphorus insecticides and their dialkyl phosphate metabolites in liver and kidney samples. J. Agr. Food Chem., 41(3), 416-422 (1993) https://doi.org/10.1021/jf00027a014
  15. Tomlin, C.: The pesticide manual. 10th, Crop Protection Publications, U.K., 1994
  16. Marco, G. J., Simoneaux, B. J., Williams, S. C, Cassidy, J. E., Bissig, R. and Muecke, W.: Dermal exposure related to pesticide use. ACS, Washington, D. C, 43-61, 1985
  17. 민경진, 차춘근: Phosphamidon과 profenofos의 광분해성. 환경위생학회지 26, 628-636 (1986)
  18. Coye, M. J., Lowe, J. A. and Maddy, K. J.: Biological monitoring of agricultural workers exposed to pesticides: II. Moni-toring of intact pesticides and their metabolites. J. of Occup. Med.. 28, 628-636 (1986) https://doi.org/10.1097/00043764-198608000-00019