Browse > Article
http://dx.doi.org/10.4014/jmb.0711.775

LC-MS/MS Profiling-Based Secondary Metabolite Screening of Myxococcus xanthus  

Kim, Ji-Young (Functional Metabolomics Laboratory, Division of Bioscience and Biotechnology, Konkuk University)
Choi, Jung-Nam (Functional Metabolomics Laboratory, Division of Bioscience and Biotechnology, Konkuk University)
Kim, Pil (Department of Biotechnology, Catholic University of Korea)
Sok, Dai-Eun (Chungnam National University)
Nam, Soo-Wan (Department of Biotechnology and Bioengineering/Department of Biomaterial Control, Dong-Eui University)
Lee, Choong-Hwan (Functional Metabolomics Laboratory, Division of Bioscience and Biotechnology, Konkuk University)
Publication Information
Journal of Microbiology and Biotechnology / v.19, no.1, 2009 , pp. 51-54 More about this Journal
Abstract
Myxobacteria, Gram-negative soil bacteria, are a well-known producer of bioactive secondary metabolites. Therefore, this study presents a methodological approach for the high-throughput screening of secondary metabolites from 4 wild-type Myxococcus xanthus strains. First, electrospray ionization mass spectrometry (ESI-MS) was performed using extracellular crude extracts. As a result, 22 metabolite peaks were detected, and the metabolite profiling was then conducted using the m/z value, retention time, and MS/MS fragmentation pattern analyses. Among the peaks, one unknown compound peak was identified as analogous to the myxalamid A, B, and C series. An analysis of the tandem mass spectrometric fragmentation patterns and HR-MS identified myxalamid K as a new compound derived from M. xanthus. In conclusion, LC-MS/MS-based chemical screening of diverse secondary metabolites would appear to be an effective approach for discovering unknown microbial secondary metabolites.
Keywords
Metabolite profiling; LC-MS/MS; Myxococcus xanthus; myxalamid;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 3  (Related Records In Web of Science)
연도 인용수 순위
1 Jansen, R., G. Reifenstahl, K. Gerth, H. Reichenbach, and G. Hofle. 1983. Myxalamide A, B, C, and D, eine gruppe homologer antibiotika aus Myxococcus xanthus Mxx12 (Myxobacteriales). Liebigs Ann. Chem. 1983: 1081-1095   DOI
2 Newman, D. J., G. M. Cragg, and K. M. Snader. 2000. The influence of natural products on drug discovery. Nat. Prod. Rep. 17: 215-234   DOI   ScienceOn
3 Reichenbach, H. and G. Hofle. 1993. Production of bioactive secondary metabolites, pp. 347-397 In M. Dworkin and D. Kaiser (eds.). Myxobacteria. American Society for Microbiology, Washington, DC
4 Rochfort, S. 2005. Metabolomics reviewed: A new 'Omics' platform technology for systems biology and implications for natural products research. J. Nat. Prod. 68: 1813-1820   DOI   PUBMED   ScienceOn
5 Reichenbach, H. and G. Hofle. 1999. Myxobacteria as producers of secondary metabolites, pp. 149-179. In S. Grabley and R. Thiericeke (eds.). Drug Discovery from Nature. Springer Verlag, Berlin
6 Meiser, P., H. B. Bode, and R. Müller. 2006. The unique DKxanthene secondary metabolite family from the myxobacterium Myxococcus xanthus is required for developmental sporulation. Proc. Natl. Acad. Sci. USA 103: 19128-19133   DOI   ScienceOn
7 Krug, D., G. Zurek, O. Revermann, M. Vos, G. J. Velicer, and R. Müller. 2008. Discovering the hidden secondary metabolome of Myxococcus xanthus: A study of intraspecific diversity. Appl. Environ. Microbiol. 74: 3058-3068   DOI   ScienceOn
8 Frykman, S., H. Tsuruta, J. Galazzo, and P. Licari. 2006. Characterization of product capture resin during microbial cultivations. J. Ind. Microbiol. Biotechnol. 33: 445-453   DOI   ScienceOn
9 Silas, G. V. B., S. Mas, M. Åkesson, J. Smedsgaard, and J. Nielsen. 2005. Mass spectrometry in metabolome analysis. Mass Spect. Rev. 24: 613-346   DOI   ScienceOn
10 Gerth, K., H. Irschik, H. Reichenbach, and W. Trowitzsch. 1982. The myxovirescins, a family of antibiotics from Myxococcus virescens (Myxobacterales). J. Antibiot. 35: 1454-1459   DOI   PUBMED
11 Reichenbach, H. and M. Dworkin. 1992. The myxobacteria, pp. 3416-3487. In A. Balows, H. G. Truper, M. Dworkin, W. Harder, and K.-H. Schleifer (eds.). The Procaryotes, 2nd Ed. Springer-Verlag, New York
12 Bino, R. J., R. D. Hall, O. Fiehn, J. Kopka, K. Saito, J. Draper, et al. 2004. Potential of metabolomics as a functional genomics tool. Trends Plant Sci. 9: 418-424   DOI   ScienceOn
13 Want, J. E., B. F. Cravatt, and G. Siuzdak. 2005. The expanding role of mass spectrometry in metabolite profiling and characterization. Chembiochem 6: 1941-1951   DOI   ScienceOn
14 Park, S., B. Lee, J. Kim, C. Lee, E. Jang, and K. Cho. 2004. Isolation and characterization of bacteriolytic wild myxobacteria. Kor. J. Microbiol. Biotechnol. 32: 218-223   과학기술학회마을
15 Kim, Y. S., W. C. Bae, and S. J. Baek. 2003. Bioactive substances from myxobacteria. Kor. J. Microbiol. Biotechnol. 31: 1-12   과학기술학회마을
16 Gerth, K., R. Jansen, G. Reifenstahl, G. Hofle, H. Irschik, B. Kunze, H. Reichenbach, and G. Thierbach. 1983. The myxalamids, new antibiotics from Myxococcus xanthus (Myxobacterales). I. Production, physico-chemical and biological properties and mechanism of action. J. Antibiot. 36: 1150-1156   DOI   PUBMED
17 Kunze, B., N. Bedorf, W. Kohl, G. H$\ddot{o}$fle, and H. Reichenbach. 1989. Myxochelin A, a new iron-chelating compound from Angiococcus disciformis (Myxobacterales). Production, isolation, physico-chemical and biological properties. J. Antibiot. 42: 14-17   DOI   PUBMED