• Title/Summary/Keyword: Message transmission

Search Result 611, Processing Time 0.025 seconds

IDMMAC: Interference Aware Distributed Multi-Channel MAC Protocol for WSAN

  • Kakarla, Jagadeesh;Majhi, Banshidhar;Battula, Ramesh Babu
    • Journal of Information Processing Systems
    • /
    • v.13 no.5
    • /
    • pp.1229-1242
    • /
    • 2017
  • In this paper, an interference aware distributed multi-channel MAC (IDMMAC) protocol is proposed for wireless sensor and actor networks (WSANs). The WSAN consists of a huge number of sensors and ample amount of actors. Hence, in the IDMMAC protocol a lightweight channel selection mechanism is proposed to enhance the sensor's lifetime. The IDMMAC protocol divides the beacon interval into two phases (i.e., the ad-hoc traffic indication message (ATIM) window phase and data transmission phase). When a sensor wants to transmit event information to the actor, it negotiates the maximum packet reception ratio (PRR) and the capacity channel in the ATIM window with its 1-hop sensors. The channel negotiation takes place via a control channel. To improve the packet delivery ratio of the IDMMAC protocol, each actor selects a backup cluster head (BCH) from its cluster members. The BCH is elected based on its residual energy and node degree. The BCH selection phase takes place whenever an actor wants to perform actions in the event area or it leaves the cluster to help a neighbor actor. Furthermore, an interference and throughput aware multi-channel MAC protocol is also proposed for actor-actor coordination. An actor selects a minimum interference and maximum throughput channel among the available channels to communicate with the destination actor. The performance of the proposed IDMMAC protocol is analyzed using standard network parameters, such as packet delivery ratio, end-to-end delay, and energy dissipation, in the network. The obtained simulation results indicate that the IDMMAC protocol performs well compared to the existing MAC protocols.

Delay Tolerant Network Routing Algorithm based on the Mobility Pattern of Mobile Nodes (이동 노드의 이동 패턴을 고려한 Delay Tolerant Network 라우팅 알고리즘)

  • So, Sang-Ho;Park, Man-Kyu;Park, Se-Chul;Lee, Jae-Yong;Kim, Byung-Chul;Kim, Dae-Young;Shin, Min-Su;Chang, Dae-Ig;Lee, Ho-Jin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.4
    • /
    • pp.13-28
    • /
    • 2009
  • Routing protocols in Delay/Disruption Tolerant Networks(DTN) are important to enhance the performance of transmission delay and delivery success ratio. In this paper, we propose an efficient DTN routing algorithm, called "Nobility Pattern based Routing(MPR)", that controls the total number of transferred message copies based on mobility patterns of mobile nodes. We consider a realistic "Levy walk" mobility pattern that has a super-diffusive property which well represents human mobility pattern. We implemented a DTN simulator using ONE simulator for the proposed MPR algorithm and Levy walk mobility pattern. Simulation results show that mobility patterns are very important for accurate evaluation of DTN routing performance, and the proposed MPR enhances the routing performance of delivery delay and success delivery ratio under realistic mobility pattern.

Performance and Iteration Number Statistics of Flexible Low Density Parity Check Codes (가변 LDPC 부호의 성능과 반복횟수 통계)

  • Seo, Young-Dong;Kong, Min-Han;Song, Moon-Kyou
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.1
    • /
    • pp.189-195
    • /
    • 2008
  • The OFDMA Physical layer in the WiMAX standard of IEEE 802.16e adopts 114 LDPC codes with various code rates and block sizes as a channel coding scheme to meet varying channel environments and different requirements for transmission performance. In this paper, the performances of the LDPC codes are evaluated according to various code rates and block-lengths throueh simulation studies using min-sum decoding algorithm in AWGN chamois. As the block-length increases and the code rate decreases, the BER performance improves. In the cases with code rates of 2/3 and 3/4, where two different codes ate specified for each code rate, the codes with code rates of 2/3A and 3/4B outperform those of 2/3B and 3/4A, respectively. Through the statistical analyses of the number of decoding iterations the decoding complexity and the word error rates of LDPC codes are estimated. The results can be used to trade-off between the performance and the complexity in designs of LDPC decoders.

One time password key exchange Authentication technique based on MANET (MANET 기반 원타임 패스워드 키교환 인증기법)

  • Lee, Cheol-Seung;Lee, Joon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.7
    • /
    • pp.1367-1372
    • /
    • 2007
  • This paper suggests One-time Password key exchange authentication technique for a strong authentication based on MANET and through identify wireless environment security vulnerabilities, analyzes current authentication techniques. The suggested authentication technique consists of 3 steps: Routing, Registration, and Running. The Routing step sets a safe route using AODV protocol. The Registration and Running step apply the One-time password S/key and the DH-EKE based on the password, for source node authentication. In setting the Session key for safe packet transmission and data encryption, the suggested authentication technique encrypts message as H(pwd) verifiers, performs key exchange and utilizes One time password for the password possession verification and the efficiency enhancement. EKE sets end to end session key using the DH-EKE in which it expounds the identifier to hash function with the modula exponent. A safe session key exchange is possible through encryption of the H(pwd) verifier. The suggested authentication technique requires exponentiation and is applicable in the wireless network environment because it transmits data at a time for key sharing, which proves it is a strong and reliable authentication technique based on the complete MANET.

SACK-SNOOP Protocol for Wireless TCP Performance Improvement (무선 TCP 성능 향상을 위한 SACK-SNOOP 프로토콜)

  • Ahn, Chi-Hyun;Kim, Hyung-Chul;Woo, Jong-Jung;Kim, Jang-Hyung;Lee, Dae-Young;Jun, Kye-Suk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.2
    • /
    • pp.392-401
    • /
    • 2007
  • Wireless network has high BER characteristic because of path loss, fading, noise and interference. Many packet losses occur without any congestion in wireless network. Therefore, many wireless TCP algorithms have been proposed. SNOOP, one of wireless TCP algorithms, hides packet losses for Fixed Host and retransmits lost packets in wireless network. However, SNOOP has a weakness for bust errors in wireless network. This paper proposes the SACK-SNOOP to improve TCP performance based on SNOOP and Freeze-TCP that use ZWA messages in wireless network. This message makes FH stop sending packets to MH. BS could retransmit error packets to MH for this time. SACK-SNOOP use improved Selective ACK, thereby reducing the number of packet sequences according to error environment. This method reduces the processing time for generation, transmission, analysis of ACK. This time gain is enough to retransmit local burst errors in wireless link. Furthermore, SACK-SNOOP can manage the retransmitted error by extending delay time to FH. The simulation shows that our proposed protocol is more effective for packet losses in wireless networks.

Query Technique for Quick Network Routing changing of Mobility Sensor Node in Healthcare System (헬스케어 시스템에서 이동형 센서노드의 신속한 네트워크 라우팅 변화를 위한 질의기법)

  • Lee, Seung-chul;Kwon, Tae-Ha;Chung, Wan-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.517-520
    • /
    • 2009
  • Healthcare application system has been actively researched to apply WSN technology to healthcare area with a mobile sensor node of low cost, low power, and small size. Sensor node has the problem for transmission range of RF power and time delay of the wireless routing connectivity between sensor nodes. In this paper, we proposes a new method utilizing mobile sensor nodes with relay sensor nodes for quick network routing changing using query technique in healthcare system. A query processor to control and manage the routing changing of sensor nodes in a wireless sensor network was designed and implemented. The user's PC transmits the beacon message which will change the quick link routing according to activity status of patient in wireless sensor network. We describe the implementation for query protocol that is very effective of power saving between sensor nodes.

  • PDF

Analysis of Incarceration Attacks with RRCReject and RRCRelease in 5G Standalone Non-Public Network

  • Kim, Keewon;Park, Jong-Geun;Park, Tae-Keun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.10
    • /
    • pp.93-100
    • /
    • 2021
  • In this paper, the possibility of a UE (User Equipment) incarceration attack using RRCRejecet and RRCRelease in 5G SNPN (Standalone Non-Public Network) is analyzed based on the 3GPP standard document. First, the cell selection and reselection procedures of the UE are analyzed, and then the processing process of the false base station and the UE before and after transmission of RRCReject and RRCRelease is analyzed. As a result of the analysis, it is possible that the false base station that transmits a strong signal causes the victim UE to establish an RRC connection to the false base station itself. In addition, if the false base station transmits an RRCReject message without integrity protection in response to the victim UE's attempt to establish an RRC connection, it is determined that the victim UE can continue to stay in the RRC connection attempt process. On the other hand, it is determined that it is impossible to incarcerate the victim UE by inducing an attempt to establish an RRC connection to another false base station using RRCRelease.

Study of Implementation as Digital Twin Framework for Vertical Smart Farm (식물공장 적용 디지털 트윈 프레임워크 설계 연구)

  • Ko, Tae Hwan;Noe, Seok Bong;Noh, Dong Hee;Choi, Ju Hwan;Lim, Tae Beom
    • Journal of Broadcast Engineering
    • /
    • v.26 no.4
    • /
    • pp.377-389
    • /
    • 2021
  • This paper presents a framework design of a digital twin system for a vertical smart farm. In this paper, a framework of digital twin systems establishes three factors: 1) Client 2) IoT gateway, and 3) Server. Especially, IoT gateway was developed using the Eclipse Ditto, which has been commonly used as the standard open hardware platform for digital twin. In particular, each factor is communicating with the client, IoT gateway, and server by defining the message sequence such as initialization and data transmission. In this paper, we describe the digital twin technology trend and major platform. The proposed design has been tested in a testbed of the lab-scale vertical smart-farm. The sensor data is received from 1 Jan to 31 Dec 2020. In this paper, a prototype digital twin system that collects environment and control data through a raspberry pi in a plant factory and visualizes it in a virtual environment was developed.

The Security Vulnerabilities of 5G-AKA and PUF-based Security Improvement (5G 인증 및 키합의 프로토콜(5G-AKA)의 보안취약점과 PUF 기반의 보안성 향상 방안)

  • Jung, Jin Woo;Lee, Soo Jin
    • Convergence Security Journal
    • /
    • v.19 no.1
    • /
    • pp.3-10
    • /
    • 2019
  • The 5G network is a next-generation converged network that combines various ICT technologies to realize the need for high speed, hyper connection and ultra low delay, and various efforts have been made to address the security vulnerabilities of the previous generation mobile networks. However, the standards released so far still have potential security vulnerabilities, such as USIM deception and replication attack, message re-transmission attack, and race-condition attack. In order to solve these security problems, this paper proposes a new 5G-AKA protocol with PUF technology, which is a physical unclonable function. The proposed PUF-based 5G-AKA improves the security vulnerabilities identified so far using the device-specific response for a specific challenge and hash function. This approach enables a strong white-list policy through the addition of inexpensive PUF circuits when utilizing 5G networks in areas where security is critical. In addition, since additional cryptographic algorithms are not applied to existing protocols, there is relatively little burden on increasing computational costs or increasing authentication parameter storage.

A Robust Energy Saving Data Dissemination Protocol for IoT-WSNs

  • Kim, Moonseong;Park, Sooyeon;Lee, Woochan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.12
    • /
    • pp.5744-5764
    • /
    • 2018
  • In Wireless Sensor Networks (WSNs) for Internet of Things (IoT) environment, fault tolerance is a most fundamental issue due to strict energy constraint of sensor node. In this paper, a robust energy saving data dissemination protocol for IoT-WSNs is proposed. Minimized energy consumption and dissemination delay time based on signal strength play an important role in our scheme. The representative dissemination protocol SPIN (Sensor Protocols for Information via Negotiation) overcomes overlapped data problem of the classical Flooding scheme. However, SPIN never considers distance between nodes, thus the issue of dissemination energy consumption is becoming more important problem. In order to minimize the energy consumption, the shortest path between sensors should be considered to disseminate the data through the entire IoT-WSNs. SPMS (Shortest Path Mined SPIN) scheme creates routing tables using Bellman Ford method and forwards data through a multi-hop manner to optimize power consumption and delay time. Due to these properties, it is very hard to avoid heavy traffic when routing information is updated. Additionally, a node failure of SPMS would be caused by frequently using some sensors on the shortest path, thus network lifetime might be shortened quickly. In contrast, our scheme is resilient to these failures because it employs energy aware concept. The dissemination delay time of the proposed protocol without a routing table is similar to that of shortest path-based SPMS. In addition, our protocol does not require routing table, which needs a lot of control packets, thus it prevents excessive control message generation. Finally, the proposed scheme outperforms previous schemes in terms of data transmission success ratio, therefore our protocol could be appropriate for IoT-WSNs environment.