• Title/Summary/Keyword: Meshless

Search Result 97, Processing Time 0.037 seconds

Analysis of Piezoelectric Ceramic Multi-layer Actuators Based on the Electro-mechanical Coupled Meshless Method (전기-기계 결합 하중을 받는 압전 세라믹 다층 작동기의 무요소 해석)

  • Kim, Hyun-Chul;Guo, Xianghua;Kim, Won-Seok;Fang, Daining;Lee, Jung-Ju
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.101-108
    • /
    • 2007
  • This paper presents an efficient meshless method for analyzing cracked piezoelectric structures subjected to mechanical and electrical loading. The method employs an element free Galerkin (EFG) formulation and an enriched basic function as well as special shape functions that contain discontinuous derivatives. Based on the moving least squares (MLS) interpolation approach, The EFG method is one of the promising methods for dealing with problems involving progressive crack growth. Since the method is meshless and no element connectivity data are needed, the burdensome remeshing procedure required in the conventional finite element method (FEM) is avoided. The numerical results show that the proposed method yields an accurate near-tip stress field in an infinite piezoelectric plate containing an interior hole. Another example is to study a ceramic multilayer actuator. The proposed model was found to be accurate in the simulation of stress and electric field concentrations due to the abrupt end of an internal electrode.

Shape Function Modification for the Imposition of EFGM Essential Boundary Conditions (EFGM에서 필수경계조건 처리를 위한 형상함수 수정법)

  • Seok, Byeong-Ho;Song, Tae-Han;Im, Jang-Geun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.3 s.174
    • /
    • pp.803-809
    • /
    • 2000
  • For the effective analysis of an engineering problem, meshless methods which require only positioning finite points without the element meshing recently have been proposed and being studied extensively. Meshless methods have difficulty in imposing essential boundary conditions directly, because non-interpolate shape functions originated from an approximation process are used. So some techniques, which are Lagrange multiplier method, modified variational principles and coupling with finite elements and so on, were introduced in order to impose essential boundary conditions. In spite of these methods, imposition of essential boundary conditions have still many problems like as non-positive definiteness, inaccuracy and negation of meshless characteristics. In this paper, we propose a new method which modifies shape function. Through numerical tests, convergence, accuracy and validity of this method are compared with the standard EFGM which uses Lagrange multiplier method or modified variational principles. According to this study, the proposed method shows the comparable accuracy and efficiency.

Elastodynamic and wave propagation analysis in a FG graphene platelets-reinforced nanocomposite cylinder using a modified nonlinear micromechanical model

  • Hosseini, Seyed Mahmoud;Zhang, Chuanzeng
    • Steel and Composite Structures
    • /
    • v.27 no.3
    • /
    • pp.255-271
    • /
    • 2018
  • This paper deals with the transient dynamic analysis and elastic wave propagation in a functionally graded graphene platelets (FGGPLs)-reinforced composite thick hollow cylinder, which is subjected to shock loading. A micromechanical model based on the Halpin-Tsai model and rule of mixture is modified for nonlinear functionally graded distributions of graphene platelets (GPLs) in polymer matrix of composites. The governing equations are derived for an axisymmetric FGGPLs-reinforced composite cylinder with a finite length and then solved using a hybrid meshless method based on the generalized finite difference (GFD) and Newmark finite difference methods. A numerical time discretization is performed for the dynamic problem using the Newmark method. The dynamic behaviors of the displacements and stresses are obtained and discussed in detail using the modified micromechanical model and meshless GFD method. The effects of the reinforcement of the composite cylinder by GPLs on the elastic wave propagations in both displacement and stress fields are obtained for various parameters. It is concluded that the proposed micromechanical model and also the meshless GFD method have a high capability to simulate the composite structures under shock loadings, which are reinforced by FGGPLs. It is shown that the modified micromechanical model and solution technique based on the meshless GFD method are accurate. Also, the time histories of the field variables are shown for various parameters.

Prediction of initiation time of corrosion in RC using meshless methods

  • Yao, Ling;Zhang, Lingling;Zhang, Ling;Li, Xiaolu
    • Computers and Concrete
    • /
    • v.16 no.5
    • /
    • pp.669-682
    • /
    • 2015
  • Degradation of reinforced concrete (RC) structures due to chloride penetration followed by reinforcement corrosion has been a serious problem in civil engineering for many years. The numerical simulation methods at present are mainly finite element method (FEM) and finite difference method (FDM), which are based on mesh. Mesh generation in engineering takes a long time. In the present article, the numerical solution of chloride transport in concrete is analyzed using radial point interpolation method (RPIM) and element-free Galerkin (EFG). They are all meshless methods. RPIM utilizes radial polynomial basis, whereas EFG uses the moving least-square approximation. A Galerkin weak form on global is used to attain the discrete equation, and four different numerical examples are presented. MQ function and appropriate parameters have been proposed in RPIM. Numerical simulation results are compared with those obtained from the finite element method (FEM) and analytical solutions. Two case of chloride transport in full saturated and unsaturated concrete are analyzed to test the practical applicability and performance of the RPIM and EFG. A good agreement is obtained among RPIM, EFG, and the experimental data. It indicates that RPIM and EFG are reliable meshless methods for prediction of chloride concentration in concrete structures.

Dof splitting p-adaptive meshless method

  • Kang, Myung-Seok;Youn, Sung-Kie
    • Structural Engineering and Mechanics
    • /
    • v.11 no.5
    • /
    • pp.535-546
    • /
    • 2001
  • A new p-adaptive analysis scheme for hp-clouds method is presented. In the scheme, refined global equations are resolved into two parts, one of them being related to the newly appended dof's. The solution obtained in previous analysis step is reflected in the force vector. The size of the p-adaptive equation consisting of the newly appended dof's is much smaller than the original equation. Consequently, the computational cost is drastically decreased. Through numerical examples, the efficiency and efficacy of the method in comparison with the existing p-refinement scheme of the hp-clouds have been demonstrated.

DEVELOPMENT OF A ROBUST MESHLESS METHOD FOR 2-D COMPRESSIBLE FLOW (2차원 압축성 유동 해석을 위한 강건한 무격자 해석기법 개발)

  • Huh, J.Y.;Rhee, J.S.;Kim, K.H.;Jung, S.Y.
    • Journal of computational fluids engineering
    • /
    • v.19 no.3
    • /
    • pp.85-90
    • /
    • 2014
  • The purpose of this study is to develop a new Meshless Method to solve 2-D compressible flow problems numerically. This paper includes a revised Least Square method that improves robustness compared with its original version by removing excessive numerical oscillation which occurs when points are randomly distributed. Numerical analyses of hypersonic flow over a blunt body were carried out using the method, then robustness, accuracy and convergence of their results were compared with those obtained from the original method.

대변형 초탄성 재료의 해석을 위한 무요소 적응기법

  • 전석기;정동원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.736-739
    • /
    • 1995
  • The meshless adaptive method based on multiple scale analysis is developed to simulate large deformation problems. In the procedure, new particles are simply added to the orginal particle distribution because meshless methods do not require mesh structures in the formulations. The high scale component of the approximated solution detects the localized region where a refinement is needed. The high scale component of the second invariant od Green-Lagrangian strain tensor is suggested as the new high gradient detector for adaptive procedures. The feasibility of the proposed theory is demonstrated by a numerical experiment for the large deformation of hyperelastic materials.

  • PDF

An Adaptive Mesh-Independent Numerical Integration for Meshless Local Petrov-Galerkin Method

  • Cho, Jin-Yeon;Jee, Young-Burm
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.7
    • /
    • pp.986-998
    • /
    • 2003
  • In this paper, an adaptive numerical integration scheme, which does not need non-overlapping and contiguous integration meshes, is proposed for the MLPG (Meshless Local Petrov-Galerkin) method. In the proposed algorithm, the integration points are located between the neighboring nodes to properly consider the irregular nodal distribution, and the nodal points are also included as integration points. For numerical integration without well-defined meshes, the Shepard shape function is adopted to approximate the integrand in the local symmetric weak form, by the values of the integrand at the integration points. This procedure makes it possible to integrate the local symmetric weak form without any integration meshes (non-overlapping and contiguous integration domains). The convergence tests are performed, to investigate the present scheme and several numerical examples are analyzed by using the proposed scheme.

Treatment of Essential Boundary Conditions using Modified Weight Functions in Meshless Method (무요소법에서 가중함수를 수정한 필수경계조건 처리법)

  • 강명석;윤성기
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.11
    • /
    • pp.2705-2712
    • /
    • 2000
  • In meshless methods some techniques to impose essential boundary conditions have been developed since the approximations do not satisfy Kronecker delta properties at nodal points. In this study, new scheme for imposing essential boundary conditions is developed. Weight functions are modified by multiplying with auxiliary weight functions and the resulting shape functions satisfy Kronecker delta property on the bound ary nodes. In addition, the resulting shape functions possess and interpolation features on the boundary segments where essential boundary conditions are prescribed. Therefore the essential boundary conditions can be exactly satisfied with the new method. More importantly, the impositions of essential boundary conditions using the present method is relatively easy as in finite element method. Numerical examples show that the method also retains high convergence rate comparable to Lagrange multiplier method.

Meshless Method Based on Wave-type Function for Accurate Eigenvalue Analysis of Arbitrarily Shaped, Clamped Plates (임의 형상 고정단 평판의 고정밀도 고유치 해석을 위한 파동 함수 기반 무요소법)

  • Kang, Sang-wook
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.5
    • /
    • pp.602-608
    • /
    • 2016
  • The paper proposes a practical meshless method for the free vibration analysis of clamped plates having arbitrary shapes by extending the non-dimensional dynamic influence function (NDIF) method, which was developed by the author in 1999. In the proposed method, the domain and boundary of the plate of interest are discretized using only nodes without elements unlike FEM and the system matrices are obtained by making domain nodes and boundary nodes satisfy the governing differential equation and boundary conditions, respectively. However, since the above system matrices are not square ones, the problem of free vibrations of clamped plates is not reduced to an algebraic eigenvalue problem. An additional theoretical treatment is considered to produce an algebraic eigenvalue problem. It is revealed from case studies that the proposed method is valid and accurate.