• 제목/요약/키워드: Mesh Deformation Technique

검색결과 36건 처리시간 0.031초

대변형 유한요소해석을 위한 요소망 자동 생성기법 (Automatic Quadrilateral Mesh Generation for Large Deformation Finite Element Analysis)

  • 김동준;최호준;장동환;임중연;이호용;황병복
    • 소성∙가공
    • /
    • 제12권3호
    • /
    • pp.194-201
    • /
    • 2003
  • An automatic quadrilateral mesh generator for large deformation finite element analysis such as metal forming simulation was developed. The NURBS interpolation method is used for modeling arbitrary 2-D free surface. This mesh generation technique is the modified paving algorithm, which is an advancing front technique with element-by-element resolving method for paving boundary intersection problem. The mesh density for higher analysis accuracy and less analysis time can be easily controlled with high-density points, maximum and minimum element size. A couple of application to large deformation finite element analysis is given as an example, which shows versatility and applicability of the proposed approach and the developed mesh generator for large deformation finite element analysis.

계층 메쉬를 이용한 빠른 평면 형상 변형 (Fast Planar Shape Deformation using a Layered Mesh)

  • 유광석;최정주
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제17권3호
    • /
    • pp.43-50
    • /
    • 2011
  • 본 논문에서는 2차원 입력 형상에 대하여 계층 메쉬를 이용한 빠르고, 품질 저하가 적은 평면 형상변형 기법을 제시한다. 입력으로 주어진 2차원형상의 내부와 경계를 조밀하게 샘플링한 정점의 집합으로 구성된 형상 메쉬와, 입력 형상을 근사적으로 둘러싸는 형상 메쉬의 일부 정점으로 구성된 제어 메쉬를 구성한다. 이때, 형상 메쉬 정점은 제어 메쉬의 정점에 대한 평균값 좌표로 표현한다. 사용자의 형상 변형 입력에 대하여 기존의 비선형 최소자승법을 사용한 메쉬 최적화문제를 풀어 제어 메쉬 정점의 변형될 위치를 구하고, 형상 메쉬는 변형된 제어 메쉬의 정점으로부터 평균값 좌표를 이용하여 최종적인 형상의 변형을 빠르게 계산한다. 형상 메쉬는 입력 형상을 정확히 표현하기 위해 많은 수의 정점으로 구성되는 반면에 제어 메쉬는 상대적으로 적은 수의 정점으로 구성된다. 계산양이 많은 최적화 방법은 제어 메쉬에만 적용되기 때문에 전체 수행시간은 매우 빠르지만, 제어 메쉬의 품질저하에 따라 형상변형의 품질 또한 저하된다. 본 논문에서는 형상 변형의 결과를 조절하고 품질 저하를 보정하기 위해서 사용자 제한에 방위 제어를 포함시켜 형상변형의 강성도를 조절하는 방법을 제시한다. 실험적인 결과에 의하면 본 논문에서 제시한 방법은 비교적 적은 수의 정점을 사용하여 형상 변형의 수행속도가 빠르면서, 변형의 시각적인 품질은 부드럽게 유지된다. 본 논문의 결과는 휴대폰이나 타블렛 PC와 같이 계산속도가 느린 임베디드 시스템에서 형상 변형을 이용한 2차원 애니메이션 제작과 같은 응용문제에 효과적으로 사용될 수 있다.

전자소자의 형상최적화를 위한 3차원 요소의 재생성법 (A New 3D Mesh Regeneration Method in the Shape Optimal Design of)

  • ;고창섭
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 B
    • /
    • pp.841-843
    • /
    • 2002
  • A novel and simple method, which can be used to automatically regenerate 3D finite element meshes, is presented in the paper. This technique based on the structural deformation analysis. It is problem independent and can be used to renew the mesh of any kind of 3D shape design system whether the geometric surface is parameterized or not. The mesh deformation degree can be adjusted by choosing suitable subregion and giving proper parameters. It is sufficient to obtain a smooth contour with proper mesh quality. Application to the optimum design of shielding plate shows the effectiveness of the proposed technique.

  • PDF

Radial Basis Function을 사용한 격자 변형에 대한 연구 (A STUDY ON A GRID DEFORMATION USING RADIAL BASIS FUNCTION)

  • 제소영;정성기;양영록;명노신;조태환
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 춘계학술대회논문집
    • /
    • pp.121-124
    • /
    • 2009
  • A moving mesh system is one of the critical parts in a computational fluid dynamics analysis. In this study, the RBF(Radial Basis Function) which shows better performance than hybrid meshes was developed to obtain the deformed grid. The RBF method can handle large mesh deformations caused by translations, rotations and deformations, both for 2D and 3D meshes. Another advantage of the method is that it can handle both structured and unstructured grids with ease. The method uses a volume spline technique to compute the deformation of block vertices and block edges, and deformed shape.

  • PDF

영역별 절점재구성을 통한 격자재구성 및 소성가공해석 (Mesh Reconstruction Using Redistibution of Nodes in Sub-domains and Its Application to the Analyses of Metal Forming Problems)

  • 홍진태;양동열
    • 한국CDE학회논문집
    • /
    • 제12권4호
    • /
    • pp.255-262
    • /
    • 2007
  • In the finite element analysis of forming process, objects are described with a finite number of elements and nodes and the approximated solutions can be obtained by the variational principle. One of the shortcomings of a finite element analysis is that the structure of mesh has become inefficient and unusable because discretization error increases as deformation proceeds due to severe distortion of elements. If the state of current mesh satisfies a certain remeshing criterion, analysis is stopped instantly and resumed with a reconstructed mesh. In the study, a new remeshing algorithm using tetrahedral elements has been developed, which is adapted to the desired mesh density. In order to reduce the discretization error, desired mesh sizes in each lesion of the workpiece are calculated using the Zinkiewicz and Zhu's a-posteriori error estimation scheme. The pre-constructed mesh is constructed based on the modified point insertion technique which is adapted to the density function. The object domain is divided into uniformly-sized sub-domains and the numbers of nodes in each sub-domain are redistributed, respectively. After finishing the redistribution process of nodes, a tetrahedral mesh is reconstructed with the redistributed nodes, which is adapted to the density map and resulting in good mesh quality. A goodness and adaptability of the constructed mesh is verified with a testing measure. The proposed remeshing technique is applied to the finite element analyses of forging processes.

Application of mesh-free smoothed particle hydrodynamics (SPH) for study of soil behavior

  • Niroumand, Hamed;Mehrizi, Mohammad Emad Mahmoudi;Saaly, Maryam
    • Geomechanics and Engineering
    • /
    • 제11권1호
    • /
    • pp.1-39
    • /
    • 2016
  • The finite element method (FEM), discrete element method (DEM), and Discontinuous deformation analysis (DDA) are among the standard numerical techniques applied in computational geo-mechanics. However, in some cases there no possibility for modelling by traditional finite analytical techniques or other mesh-based techniques. The solution presented in the current study as a completely Lagrangian and mesh-free technique is smoothed particle hydrodynamics (SPH). This method was basically applied for simulation of fluid flow by dividing the fluid into several particles. However, several researchers attempted to simulate soil-water interaction, landslides, and failure of soil by SPH method. In fact, this method is able to deal with behavior and interaction of different states of materials (liquid and solid) and multiphase soil models and their large deformations. Soil indicates different behaviors when interacting with water, structure, instrumentations, or different layers. Thus, study into these interactions using the mesh based grids has been facilitated by mesh-less SPH technique in this work. It has been revealed that the fast development, computational sophistication, and emerge of mesh-less particle modeling techniques offer solutions for problems which are not modeled by the traditional mesh-based techniques. Also it has been found that the smoothed particle hydrodynamic provides advanced techniques for simulation of soil materials as compared to the current traditional numerical methods. Besides, findings indicate that the advantages of applying this method are its high power, simplicity of concept, relative simplicity in combination of modern physics, and particularly its potential in study of large deformations and failures.

비정렬 혼합 격자계에서 격자 변형 기법을 이용한 가변노즐 유동 해석 (NUMERICAL STUDY OF VARIABLE GEOMETRY NOZZLE FLOW USING A MESH DEFORMATION TECHNIQUE ON HYBRID UNSTRUCTURED MESHES)

  • 김재원;권오준
    • 한국전산유체공학회지
    • /
    • 제18권3호
    • /
    • pp.26-33
    • /
    • 2013
  • In the present study, unsteady flow simulations of a variable geometry nozzle were conducted using a two-dimensional flow solver based on hybrid unstructured meshes. The variable geometry nozzle is used to achieve efficient performances of aircraft engines at various operating conditions. To describe the motion of the variable geometry nozzle, an algebraic method based on the basis decomposition of normal edge vector was used for the deformation of viscous elements. A ball-vertex spring analogy was used for inviscid elements. The aerodynamic data were obtained for a range of nozzle pressure ratios, and the validations were made by comparing the present results with available experimental data. The unsteady nozzle flows were simulated with an oscillating diverging section and a converging-diverging section. It was found that the nozzle performances are influenced by the nozzle exit flow characteristics, mass flow rate, as well as unsteady effects. These unsteady effects are shown to behave differently depending on the frequency of the nozzle motion.

무두께 요소층을 이용한 육면체 격자의 반복적 적응 격자 세분 (Adaptive mesh refinement for 3-D hexahedral element mesh by iterative inserting zero-thickness element layers)

  • 박철현;양동열
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 추계학술대회논문집
    • /
    • pp.79-82
    • /
    • 2004
  • In this study, a new refinement technique for 3-dimensional hexahedral element mesh is proposed, which is aimed at the control of mesh density. With the proposed scheme the mesh is refined adaptively to the elemental error which is estimated by 'a posteriori' error estimator based on the energy norm. A desired accuracy of an analysis i.e. a limit of error defines the new desired mesh density map on the current mesh. To obtain the desired mesh density, the refinement procedure is repeated iteratively until no more elements to be refined exist. In the algorithm, at first the regions of mesh to be refined are defined and, then, the zero-thickness element layers are inserted into the interfaces between the regions. All the meshes in the regions, in which the zero-thickness layers are inserted, are to be regularized in order to improve the shape of the slender elements on the interfaces. This algorithm is tested on a simple shape of 2-d quadrilateral element mesh and 3-d hexahedral element mesh. A numerical example of elastic deformation of a plate with a hole shows the effectiveness of the proposed refinement scheme.

  • PDF

영역별 절점 재분포를 통한 사면체 격자 재구성 방법 및 유한요소해석에의 적용 (A New Remeshing Technique of Tetrahedral Elements by Redistribution of Nodes in Subdomains and its Application to the Finite Element Analysis)

  • 홍진태;이석렬;양동열
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.607-610
    • /
    • 2005
  • A remeshing algorithm using tetrahedral elements has been developed, which is adapted to the mesh density map constructed by a posteriori error estimation. In the finite element analyses of metal forging processes, numerical error increases as deformation proceeds due to severe distortion of elements. In order to reduce the numerical error, the desired mesh sizes in each region of the workpiece are calculated by a posteriori error estimation and the density map is constructed. Piecewise density functions are then constructed with the radial basis function in order to interpolate the discrete data of the density map. The sample mesh is constructed based on the point insertion technique which is adapted to the density function and the mesh size is controlled by moving and deleting nodes to obtain optimal distribution according to the mesh density function and the quality optimization function as well. After finishing the redistribution process of nodes, a tetrahedral mesh is constructed with the redistributed nodes, which is adapted to the density map and resulting in good mesh quality. A goodness and adaptability of the constructed mesh is verified with a testing measure. The proposed remeshing technique is applied to the finite element analyses of forging processes.

  • PDF

버블패킹방법을 이용한 2차원 자동격자 생성 및 재구성 알고리듬 개발 (II) -비선형 해석- (Development of Algorithm for Two Dimensional Automatic Mesh Generation and Remeshing Technique Using Bubble Packing Method (II) - Nonlinear Analysis -)

  • 정순완;김승조
    • 대한기계학회논문집A
    • /
    • 제25권12호
    • /
    • pp.1926-1932
    • /
    • 2001
  • In this second part of the paper, the automatic mesh generation and remeshing algorithm using bubble packing method is applied to the nonlinear problem. The remeshing/refinement procedure is necessary in the large deformation process especially because the mesh distortion deteriorates the convergence and accuracy. To perform the nonliear analysis, the transfer of state variables such as displacement and strain is added to the algorithm of Part 1. The equilibrium equation based on total Lagrangian formulation and elasto-viscoplastic model is used. For the numerical experiment, the upsetting process including the contact constraint condition is analyzed by two refinement criteria. And from the result, it is addressed that the present algorithm can generate the refined meshes easily at the largely deformed area with high error.