• Title/Summary/Keyword: Mesh Construction

Search Result 230, Processing Time 0.026 seconds

Analysis of the operation status and opinion on the improvement of fishing vessel structure in coastal improved stow net fishery by the questionnaire survey (설문조사를 통한 연안개량안강망어업의 조업 실태 및 어선 구조 개선에 관한 의견 분석)

  • CHANG, Ho-Young;KIM, Min-Son;HWANG, Bo-Kyu;OH, Jong Chul
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.57 no.4
    • /
    • pp.316-333
    • /
    • 2021
  • In order to understand basic data for improving the fishing system and fishing vessel structure in coastal improved stow net fishery, a questionnaire survey and on-site hearing were conducted from May 10 to June 11, 2019 to analyze opinions on the improvement of operation status and fishing vessel structure. The questionnaire survey consisted of ten questions on the operation status of coastal improved stow net fishery and six questions on the improvement of fishing vessel structure, and the results of each question were analyzed by the region, the captain's age, the captain's career and the age of fishing vessel. As a result of analyzing opinions on the operation status of the coastal improved stow net fishery, it was found that the average time required for casting net was 32.8 to 33.0 minutes and that the average time required for hauling net was 41.0 to 42.2 minutes which took 10 to 12 minutes more than for casting net. The most important work requiring improvement during fishing operation (the first priority) were 'hauling net operation,' 'readjustment and storage of fishing gear,' and 'fish handling' and the hardest factor in fishing management were in the order of 'reduction of catch,' 'labor shortage' and 'rising labor costs.' The most institutional improvement that is most needed in coastal improved stow net fishery was an 'using fine mesh nets.' Most of the respondent to the questions on the experience in hiring foreign crews was 'either hiring or willing to hire foreign crews,' and the average number of foreign crews employed was found to be 2.3 to 2.4 persons. The most important reason for hiring (or considering employment) foreign crews was 'high labor costs.' The degree of communication with foreign crews during fishing operation were 'moderate' or 'difficult to direct work.' The most important problem in hiring foreign crews (the first priority) was an 'illegal departure.' As the survey results on the opinion of structural improvement of coastal improved stow net fishing vessel, the degree of satisfaction with fishing vessel structure related to fishing operation was found to be somewhat unsatisfactory, with an average of 3.3 points on a five-point scale. The inconvenient structure of fishing vessel in possession (the first priority), the space needed most for the construction of new fishing vessel (the first priority) and the space considered important for the construction of new fishing vessel (the first prioprity) was a 'fish warehouse.' The most preferred equipment for the construction of new fishing vessel were 'engine operation monitoring' and 'navigation safety devices.' The average size (tonnage class), the average horse power and the average total length of fishing vessel for proper profit and safety fishing operation was between 13.8 and 14.0 tonnes, 808.3 to 819.5 H.P. and 23.4 to 23.5 meters, respectively. The results of the operation status of coastal improved stow net fishery and the requirement for improving the fishing vessel structure are expected to be provided as basic data for reference when we build or improve the fishing vessel.

Construction of Surface Boundary Conditions for the Regional Climate Model in Asia Used for the Prevention of Disasters Caused by Climate Changes (기상방재 대책수립을 위한 아시아지역 기상모형에 필요한 지표경계조건의 구축)

  • Choi, Hyun-Il
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.5
    • /
    • pp.73-78
    • /
    • 2007
  • It has been increasing that significant loss of life and property due to global wanning and extreme weather, and the climate and temperature changes in Korea Peninsula are now greater than the global averages. Climate information from regional climate models(RCM) at a finer resolution than that of global climate models(GCM) is required to predictclimate and weather variability, changes, and impacts. The new surface boundary conditions(SBCs) development is motivated by the limitations and inconsistencies of existing SBCs that have influence on model predictability. A critical prerequisite in constructing SBCs is that the raw data should be accurate with physical consistency across all relevant parameters and must be appropriately filled for missing data if any. The aim of this study is to construct appropriate SBCs for the RCM in Asia domain which will be used for the prevention of disasters due to climate changes. As all SBCs have constructed onto the 30km grid-mesh of the RCM suitable for Asia applications, they can be also used for other distributed models for climate and hydrologic studies.

Efficient Vibration Analysis of Stadium Stands (경기장 관람석의 효율적인 진동해석)

  • 김기철;이동근
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.2
    • /
    • pp.293-303
    • /
    • 2002
  • Recently, the use of the high strength materials and development of construction techniques have resulted in more flexible and longer spanning in the stadium systems. So the natural frequency of stadium structures are became low. Stadium stand could be led to significant dynamic response as like resonance due to spectator rhythmical activities. The accurate analysis of dynamic behavior of stadium systems and the precise investigation of the dynamic loads on stadium structures are demanded for effective design. It is desirable to apply measured dynamic loads created by spectator activities because these dynamic loads are not easy to express numerical formula. As the floor mesh of stadium stand is refined, the number of divided elements increases in numerical analysis. the rise of the number of elements makes the numbers of nodal points increased and numerous computer memory required. So it is difficult to analysis refine full model of stadium structures by using the commercial programs. In this study, the various dynamic loads induced by spectator movements are measured and analyzed. And a new modeling method that reduce the nodal points are introduced. Vibration analysis of stadium stands is executed to inspect accuracy and efficiency of proposed method in this paper.

Numerical Analysis of Multi-dimensional Consolidation Based on Non-Linear Model (비선형 모델에 의한 다차원 압밀의 수치해석)

  • Jeong, Jin-Seop;Gang, Byeong-Seon;Nam, Gung-Mun
    • Geotechnical Engineering
    • /
    • v.1 no.1
    • /
    • pp.59-72
    • /
    • 1985
  • This paper deals with the numerical analysis by the (mite element method introducing Biot's theory of consolidation and the modified Cambridge model proposed by Roscoe school of Cambridge University as constitutive equation and using Christian-Boehner's technique. Especially, time interval and division of elements are investigated in vies of stability and economics. In order to check the validity of author's program, the program was tested with one-dimensional consolidation case followed by Terzaghi's exact solution and with the results of the Magnan's analysis for existing banking carried out for study at Cubzac-les-ports in France. The main conclusions obtained are summarized as follows: 1. In the case of one-dimensional consolidation, the more divided the elements are near the surface of the foundation, the higher the accuracy of the numerical analysis is. 2. For the time interval, it is stable to divide 20 times per 1-lg cycle. 3. At the element which has long drain distance, the Mandel-fryer effect appears due to time lag. 4. Lateral displacement at an initial loading stage predicted by author's program, in which the load was assumed as not concentrative. but rather in grid form, is well consistent with the value of observation. 5. The pore water pressure predicted by author's program has a better accordance with the value of observation compared with Magnan's results. 6. Optimum construction control by Matsuo-Kawamura's method is possible with the predicted lateral displacement and settlement by the program.

  • PDF

Semi-Automatic Method for Constructing 2D and 3D Indoor GIS Maps based on Point Clouds from Terrestrial LiDAR (지상 라이다의 점군 데이터를 이용한 2차원 및 3차원 실내 GIS 도면 반자동 구축 기법 개발)

  • Hong, Sung Chul;Jung, Jae Hoon;Kim, Sang Min;Hong, Seung Hwan;Heo, Joon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.2
    • /
    • pp.99-105
    • /
    • 2013
  • In rapidly developing urban areas that include high-rise, large, and complex buildings, indoor and outdoor maps in GIS become a basis for utilizing and sharing information pertaining to various aspects of the real world. Although an indoor mapping has gained much attentions, research efforts are mostly in 2D and 3D modeling of terrain and buildings. Therefore, to facilitate fast and accurate construction of indoor GIS, this paper proposes a semi-automatic method consisting of preprocessing, 2D mapping, and 3D mapping stages. The preprocessing is designed to estimate heights of building interiors and to identify noise data from point clouds. In the 2D mapping, a floor map is extracted with a tracing grid and a refinement method. In the 3D mapping, a 3D wireframe model is created with heights from the preprocessing stage. 3D mesh data converted from noise data is combined with the 3D wireframe model for detail modeling. The proposed method was applied to point clouds depicting a hallway in a building. Experiment results indicate that the proposed method can be utilized to construct 2D and 3D maps for indoor GIS.

Numerical simulation of groundwater flow in LILW Repository site:I. Groundwater flow modeling (중.저준위 방사성폐기물 처분 부지의 지하수 유동에 대한 수치 모사: 1. 지하수 유동 모델링)

  • Park, Kyung-Woo;Ji, Sung-Hoon;Kim, Chun-Soo;Kim, Kyung-Su;Kim, Ji-Yeon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.4
    • /
    • pp.265-282
    • /
    • 2008
  • Based on the site characterization works in a low and intermediate level waste(LILW) repository site, the numerical simulations for groundwater flow were carried out in order to understand the groundwater flow system of repository site. To accomplish the groundwater flow modeling in the repository site, the discrete fracture network(DFN) model was constructed using the characteristics of fracture zones and background fractures. At result, the total 10 different hydraulic conductivity(K) fields were obtained from DFN model stochastically and K distributions of constructed mesh were inputted into the 10 cases of groundwater flow simulations in FEFLOW. From the total 10 numerical simulation results, the simulated groundwater levels were strongly governed by topography and the groundwater fluxes were governed by locally existed high permeable fracture zones in repository depth. Especially, the groundwater table was predicted to have several tens meters below the groundwater table compared with the undisturbed condition around disposal silo after construction of underground facilities. After closure of disposal facilities, the groundwater level would be almost recovered within 1 year and have a tendency to keep a steady state of groundwater level in 2 year.

  • PDF

Assessing 3D seismic damage performance of a CFR dam considering various reservoir heights

  • Karalar, Memduh;Cavusli, Murat
    • Earthquakes and Structures
    • /
    • v.16 no.2
    • /
    • pp.221-234
    • /
    • 2019
  • Today, many important concrete face rockfill dams (CFRDs) have been built on the world, and some of these important structures are located on the strong seismic regions. In this reason, examination and monitoring of these water construction's seismic behaviour is very important for the safety and future of these dams. In this study, the nonlinear seismic behaviour of Ilısu CFR dam which was built in Turkey in 2017, is investigated for various reservoir water heights taking into account 1995 Kobe near-fault and far-fault ground motions. Three dimensional (3D) finite difference model of the dam is created using the FLAC3D software that is based on the finite difference method. The most suitable mesh range for the 3D model is chosen to achieve the realistic numerical results. Mohr-Coulomb nonlinear material model is used for the rockfill materials and foundation in the seismic analyses. Moreover, Drucker-Prager nonlinear material model is considered for the concrete slab to represent the nonlinearity of the concrete. The dam body, foundation and concrete slab constantly interact during the lifetime of the CFRDs. Therefore, the special interface elements are defined between the dam body-concrete slab and dam body-foundation due to represent the interaction condition in the 3D model. Free field boundary condition that was used rarely for the nonlinear seismic analyses, is considered for the lateral boundaries of the model. In addition, quiet artificial boundary condition that is special boundary condition for the rigid foundation in the earthquake analyses, is used for the bottom of the foundation. The hysteric damping coefficients are separately calculated for all of the materials. These special damping values is defined to the FLAC3D software using the special fish functions to capture the effects of the variation of the modulus and damping ratio with the dynamic shear-strain magnitude. Total 4 different reservoir water heights are taken into account in the seismic analyses. These water heights are empty reservoir, 50 m, 100 m and 130 m (full reservoir), respectively. In the nonlinear seismic analyses, near-fault and far-fault ground motions of 1995 Kobe earthquake are used. According to the numerical analyses, horizontal displacements, vertical displacements and principal stresses for 4 various reservoir water heights are evaluated in detail. Moreover, these results are compared for the near-fault and far-faults earthquakes. The nonlinear seismic analysis results indicate that as the reservoir height increases, the nonlinear seismic behaviour of the dam clearly changes. Each water height has different seismic effects on the earthquake behaviour of Ilısu CFR dam. In addition, it is obviously seen that near-fault earthquakes and far field earthquakes create different nonlinear seismic damages on the nonlinear earthquake behaviour of the dam.

Changes of Benthic Macroinvertebrate Communities after a Small Dam Removal from the Gyeongan Stream in Gyeonggi-do, Korea (경기도 경안천에서 소형 보(洑)의 철거 이후에 변화된 저서성 대형무척추동물 군집)

  • Kil, Hye-Kyung;Kim, Dong-Gun;Jung, Sang-Woo;Shin, Il-Kwon;Cho, Kang-Hyun;Woo, Hyo-Seop;Bae, Yeon-Jae
    • Korean Journal of Environmental Biology
    • /
    • v.25 no.4
    • /
    • pp.385-393
    • /
    • 2007
  • Benthic macroinvertebrate communities were studied after a small dam removal from the mid-section of the Gyeongan stream in Gyeonggi-do, Korea. Quantitative sampling was conducted at immediately upstream (upper) and downstream (lower) sites from the dam as well as at the site where the dam was located (dam site: middle) using a Surber sampler (50$\times$50 cm, mesh 0.25 mm), four times (November 2004, May 2005, January 2006, and May 2006) after the dam removal. As a result, 46 species of benthic macroinvertebtates, belonged in 35 genera, 27 families, 11 orders, 5 classes, and 4 phyla, were sampled from the stream sites, but the number of species that occurred at each sampling trial was different (ranged 3$\sim$17 spp.) according to the seasons and sites. Approximately one year after the dam removal, the species number has in-creased and taxa composition has changed as the microhabitat became more heterogeneously due to a riffle formation in the upstream site. Chironomid larvae and tubificid worms, which are common in Korean urban streams, were the dominant species, while Hydropsyche kozhantschikovi was the 2nd dominant species at some sampling trials. In general, McNaughton's dominance indices decreased and Shannon species diversity indices increased approximately one year after the dam removal. Compositions of collector-filterers, clingers, and swimmers increased as hydropsychid caddisflies, heptageniid mayflies, and baetid mayflies increased, respectively, in the upstream site. The group pollution index and the ecological score using benthic macroinvertebrates both indicated that water environment has been improved in the upstream site after the dam removal.

Spatio-temporal Distribution of Macrozoobenthos in the Three Estuaries of South Korea (우리나라 3개 하구역 대형저서동물 군집 시공간 분포)

  • LIM, HYUN-SIG;LEE, JIN-YOUNG;LEE, JUNG-HO;SHIN, HYUN-CHUL;RYU, JONGSEONG
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.1
    • /
    • pp.106-127
    • /
    • 2019
  • This study aims to understand spatio-temporal variations of macrozoobenthos community in Han River (HRE), Geum River (GRE), and Nakdong River estuaries (NRE) of Korea, sampled by National Survey of Marine Ecosystem. The survey was seasonally performed at a total of 20 stations for three years (2015-2017). Sediment samples were taken three times with van Veen grab of $0.1m^2$) areal size and sieved through a 1 mm pore size mesh on site. A total of 1,008 species were identified with 602 species in HRE, 612 in GRE, and 619 in NRE, showing similar number of species between estuaries. Mean density was $1,357ind./m^2$, showing the high in NRE ($1,357ind./m^2$), mid in GRE ($1,357ind./m^2$), and low in HRE ($1,127ind./m^2$). Mean biomass was $116.8g/m^2$, showing similar variations to density ($174.2g/m^2$ in NRE, $129.0g/m^2$ in GRE, $49.0g/m^2$ in HRE). Polychaeta dominated in number of species and density in three estuaries. Biomass-dominated taxon was Mollusca in HRE and GRE, and Echinodermata in NRE. Polychaetous species dominated all three estuaries over 4% of density, such as Dispio oculata, Heteromastus filiformis and Aonides oxycephala in HRE, Heteromastus filiformis and Scoletoma longifolia in GRE, and Pseudopolydora sp. and Aphelochaeta sp. in NRE, showing various density between estuaries. Community structure was determined by various environmental variables among estuaries such as mean grain size and sorting (HRE), salinity and mean grain size (GRE), and salinity, dissolved oxygen, loss on ignition and mud content (NRE). Our study demonstrates the application of different measures to manage ecosystems in three estuaries. HRE needs to alleviate sedimentary stressors such as sand mining, land-filling, dike construction. Management of GRE should be focused on fresh water control and sedimentary stressors. In NRE, monitoring of dominant benthos and process study on hypoxia occurrence in inner Masan Bay are necessary.

A Study on Precision of 3D Spatial Model of a Highly Dense Urban Area based on Drone Images (드론영상 기반 고밀 도심지의 3차원 공간모형의 정밀도에 관한 연구)

  • Choi, Yeon Woo;Yoon, Hye Won;Choo, Mi Jin;Yoon, Dong Keun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.2
    • /
    • pp.69-77
    • /
    • 2022
  • The 3D spatial model is an analysis framework for solving urban problems and is used in various fields such as urban planning, environment, land and housing management, and disaster simulation. The utilization of drones that can capture 3D images in a short time at a low cost is increasing for the construction of 3D spatial model. In terms of building a virtual city and utilizing simulation modules, high location accuracy of aerial survey and precision of 3D spatial model function as important factors, so a method to increase the accuracy has been proposed. This study analyzed location accuracy of aerial survey and precision of 3D spatial model by each condition of aerial survey for urban areas where buildings are densely located. We selected Daerim 2-dong, Yeongdeungpo-gu, Seoul as a target area and applied shooting angle, shooting altitude, and overlap rate as conditions for the aerial survey. In this study, we calculated the location accuracy of aerial survey by analyzing the difference between an actual survey value of CPs and a predicted value of 3D spatial Model. Also, We calculated the precision of 3D spatial Model by analyzing the difference between the position of Point cloud and the 3D spatial Model (3D Mesh). As a result of this study, the location accuracy tended to be high at a relatively high rate of overlap, but the higher the rate of overlap, the lower the precision of 3D spatial model and the higher the shooting angle, the higher precision. Also, there was no significant relationship with precision. In terms of baseline-height ratio, the precision tended to be improved as the baseline-height ratio increased.