• Title/Summary/Keyword: Mesh Generation

Search Result 525, Processing Time 0.026 seconds

Automatic Generation of Quadrilateral Shell Elements on Sculptured Surfaces (자유곡면에서 사각형 쉘요소의 자동생성)

  • Park, S.J.;Chae, S.W.;Koh, B.C.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.6
    • /
    • pp.145-153
    • /
    • 1995
  • An algorithm for the automatic generation of quadrilateral shell elements on three-dimensional sculptured surfaces has been developed, which is one of the key issues in the finite element analysis of structures with complex shapes such as automobile structures. Mesh generation on sculptured surfaces is performed in three steps. First a sculptured surface is transformed to a projection plane, on which the loops are subdivided into subloops by using the best split lines, and with the use of 6-node/8-node loop operators and a layer operator, quadrilateral finite elements are constructed on this plane. Finally, the constructed mesh is transformed back to the original sculptured surfaces. The proposed mesh generation scheme is suited for the generation of non-uniform meshes so that it can be effectively used when the desired mesh density is available. Sample meshes are presented to demonstrate the versatility of the algorithm.

  • PDF

Automated Adaptive Tetrahedral Element Generation for Three-Dimensional Metal Forming Simulation (삼차원 소성가공 공정 시뮬레이션을 위한 지능형 사면체 요소망 자동생성)

  • Lee M.C.;Joun M.S.
    • Transactions of Materials Processing
    • /
    • v.15 no.3 s.84
    • /
    • pp.189-194
    • /
    • 2006
  • In this paper, an automated adaptive mesh generation scheme, based on an advancing-front-Delaunay method, is presented fur finite element simulation of three dimensional bulk metal farming processes. Basic approach is introduced in detail, including a surface meshing and volume meshing technique and a mesh density control scheme. The presented approach is applied to automatic forging simulation in order to evaluate the effect of the developed schemes. Comparison shows a good agreement between required mesh density and generated mesh density, implying that the presented approach is appropriate for automatic mesh generation in metal forming simulation.

A Modified Mesh Generation Algorithm Using Pollution Error (Pollution error를 이용한 개선된 요소생성 알고리즘)

  • 유형선;장준환
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.34-42
    • /
    • 2001
  • In this paper, we study on a modified mesh generation method based on the pollution error estimate. This method is designed for the control of the pollution error in any patch of elements of interest. It is a well-known fact that the pollution error estimates are much more than the local one. Reliable a posteriori error estimation is possible by controlling the pollution error in the patch through proper design of the mesh outside the patch. This design is possible by equally distributing the pollution error indicators over the mesh outside the patch. The conventional feedback pollution-adaptive mesh generation algorithm needs many iterations. Therefore, the solution time is significant. But we use the remeshing scheme in the proposed method. We will also show that the pollution error reduces less than the local error.

  • PDF

A New Indirct Quadrilateral Mesh Generation Scheme from Background Triangular Mesh (삼각형 배경 요소를 이용한 새로운 사각형 요소망 생성법)

  • Kwon K.Y.;Park J.M.;Lee B.C.;Chae S.W.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.11 no.2
    • /
    • pp.107-114
    • /
    • 2006
  • A new quadrilateral mesh generation technique from an existing triangle mesh is proposed in this paper. The proposed method is based on advancing front method and zero-thickness layer. Beginning with an initial triangular mesh, boundary triangular elements are removed and quadrilateral elements with zero thickness are generated. A quality of quadrilateral elements is improved during a mesh smoothing process. Until all initial triangular elements are removed, this procedure is repeated. Sample meshes are constructed to demonstrate the mesh generation capability of proposed algorithm.

A Study on the Effecient Mesh Generation for Finite Element Analysis of Electric Machinery (전기기기의 유한 요소 해석을 위한 효율적인 요소 생성에 관한 연구)

  • Kim, Jin-Tae;Jeong, Tae-Gyeong;Kim, Hyeong-Seok
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.4
    • /
    • pp.174-181
    • /
    • 1999
  • To obtain more accurate result in the finite element analysis for electric machinery, it is important to have a mesh being of good quality. This paper describes a new technique of mesh generation for the finite element method. When the list of points defining the region of analysis is given, an appropriate distribution of interior points is generated first. Secondly the points are connected to from the trianlges. Finally the connectivity data are used to reposition the interior points using Laplacian smoothing and mesh relaxation technique. In this paper, a mesh searching technique of Lawson which modifies the start mesh is proposed in addition to the above three steps. This algorithm is simple and produces the meshes being of good quality with high speed in comparison with the existing one.

  • PDF

Development of High-Performance FEM Modeling System Based on Fuzzy Knowledge Processing

  • Lee, Joon-Seong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.2
    • /
    • pp.193-198
    • /
    • 2004
  • This paper describes an automatic finite element (FE) mesh generation for three-dimensional structures consisting of tree-form surfaces. This mesh generation process consists of three subprocesses: (a) definition of geometric model, (b) generation of nodes, and (c) generation of elements. One of commercial solid modelers is employed for three-dimensional solid structures. Node is generated if its distance from existing node points is similar to the node spacing function at the point. The node spacing function is well controlled by the fuzzy knowledge processing. The Voronoi diagram method is introduced as a basic tool for element generation. Automatic generation of FE meshes for three-dimensional solid structures holds great benefits for analyses. Practical performances of the present system are demonstrated through several mesh generations for three-dimensional complex geometry.

Automatic Mesh Generation System for a Novel FEM Modeling Based on Fuzzy Theory (퍼지이론을 이용한 FEM 모델링을 위한 자동 요소분할 시스템)

  • Lee Yang-Chang;Lee Joon-Seong;Choi Yoon-Jong;Kim Nam-Yong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.3
    • /
    • pp.343-348
    • /
    • 2005
  • This paper describes an automatic finite element (FE) mesh generation for three-dimensional structures consisting of free-form surfaces. This mesh generation process consists of three subprocesses: (a) definition of geometric model, i.e. analysis model, (b) generation of nodes, and (c) generation of elements. One of commercial solid modelers is employed for three-dimensional solid structures. Node is generated if its distance from existing node points is similar to the node spacing function at the point. The node spacing function is well controlled by the fuzzy knowledge processing. The Delaunay method is introduced as a basic tool for element generation. Automatic generation of FE meshes for three-dimensional solid structures holds great benefits for analyses. Practical performances of the present system are demonstrated through several mesh generations for three-dimensional complex geometry.

Automatic Mesh Generation System for a Novel FEM Modeling Based on Fuzzy Theory (퍼지이론을 이용한 FEM 모델링을 위한 자동 요소분할 시스템)

  • Lee Joon-Seong;Lee Yang-Chang;Choi Yoon-Jong
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.04a
    • /
    • pp.139-142
    • /
    • 2005
  • This paper describes an automatic finite element (FE) mesh generation for three-dimensional structures consisting of free-form surfaces. This mesh generation process consists of three subprocesses: (a) definition of geometric model, i.e. analysis model, (b) generation of nodes, and (c) generation of elements. One of commercial sol id modelers is employed for three-dimensional sol id structures. Node is generated if its distance from existing node points is similar to the node spacing function at the point. The node spacing function is well control led by the fuzzy knowledge processing. The Delaunay method is introduced as a basic tool for element generation. Automatic generation of FE meshes for three-dimensional sol id structures holds great benefits for analyses. Practical performances of the present system are demonstrated through several mesh generations for three-dimensional complex geometry.

  • PDF

Adaptive Mesh Refinement and Multigrid FEM by Error Estimation (오차추정에 의한 순응형요소분할과 다단계 유한요소해석)

  • Yang, P.D.C.;Hwang, M.Y.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.1
    • /
    • pp.90-97
    • /
    • 1996
  • The optimal mesh refinement has a meaning that error of the every element is within an allowable level and in uniformly distributed. The adaptive mesh generation may be required to achieve the optimal mesh generation. For the purpose of optimal mesh generation, an error estimation and an adaptive mesh refinement are required. Using the adaptive mesh generation the second finite element analysis is performed with the result of the first analysis. In the process the error estimation is required. In this study the adaptive mesh generation program for triangular element is developed, and for a posteriori error estimation the stress projection approach is considered. It has been found the multigrid technique, where the error estimation and the mesh generation are combined in multi-step of analysis, may be used efficiently in the finite element analysis.

  • PDF

Quadrilateral Mesh Generation on Trimmed NURBS Surfaces

  • Chae, Soo-Won;Kwon, Ki-Youn
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.592-601
    • /
    • 2001
  • An automatic mesh generation scheme with unstructured quadrilateral elements on trimmed NURBS surfaces has been developed. In this paper NURBS surface geometries in the IGES format have been employed to represent geometric models. For unstructured mesh generation with quadrilateral elements, a domain decomposition algorithm employing loop operators has been modified. As for the surface meshing, an indirect 2D approach is proposed in which both quasi-expanded planes and projection planes are employed. Sampled meshes for complex models are presented to demonstrate the robustness of the algorithm.

  • PDF